các bạn cho tớ xin cách làm GTNN và GTLN của lớp 6
và bạn làm hộ tớ bài này
B= |y-3|+50 có GTNN tìm GTNN đó
nhanh lên nha nhớ làm cho tiết đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia ta được thương là: \(2x^2+2x+1\)
Đặt \(A=2x^2+2x+1=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Chúc bạn học tốt.
M = |4x-5| + |7+4x} = |5-4x| + |7+4x| ≥ |5-4x + 7+4x| = |12| = 12
minM = 12, đạt khi (5-4x)(7+4x) ≥ 0 <=> -7/4 ≤ x ≤ 5/4
~ ~ ~ ~ ~ ~ ~ ~
1) N = (2x-8)/5x = 2/5 - 8/5x
thấy N > 2/5 nếu x < 0 và N < 2/5 nếu x > 0, do đó để tìm min chỉ cần xét x > 0
x ≥ 1 => 5x ≥ 5 => 1/5x ≤ 1/5 => -8/5x ≥ -8/5 => N = 2/5 - 8/5x ≥ 2/5 - 8/5 = -6/5
minN = -6/5 ; đạt khi x = 1
2a) (4x+1)²+3 ≥ 3 => 1/[(4x+1)²+3] ≤ 1/3 => E = 7/[(4x+1)²+3] ≤ 7/3
maxE = 7/3 đạt khi x = -1/4
2b) |x-4|+7 ≥ 7 => 1/(|x-4|+7) ≤ 1/7 => E = 2/(|x-4|+7) ≤ 2/7
maxE = 2/7, đạt khi x = 4
3a) ghi nhầm đề:
[x] + {y} = 1,5 = 1 + 0,5 => [x] = 1 và {y} = 0,5
{x} + [y] = 3,2 = 0,2 + 3 => {x} = 0,2 và [y] = 3
vậy x = [x]+{x} = 1,2 ; y = [y]+{y} = 3,5
3b) [x] + {y} = 4,7 = 4 + 0,7 => [x] = 4 và {y} = 0,7
x+y = [x] + {x} + [y] + {y} = 3,2 , thay ở trên vào
=> 4 + {x} + [y] + 0,7 = 3,2 => {x} + [y] = -1,5 = 0,5 - 2
=> {x} = 0,5 và [y] = -2
vậy: x = 4,5 và y = -1,7
~~~~~~~~~~~~~~~~~
ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)
Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
STN lớn nhất có các chữ số khác nhau mà tích các chữ số là 40 là 5421
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
Áp dụng BĐT Cô-si cho 2 số dương ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\left(1\right)\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\left(2\right)\)
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\left(2\right)\)
Từ (1) ;(2) và (3) suy ra:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=6\)
Vậy \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\).Dấu "=" xảy ra <=>\(\hept{\begin{cases}a+b+c=6abc\\\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}\end{cases}=>a=b=c=\frac{1}{\sqrt{2}}}\)
A = \(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
\(=\left(\frac{x}{3}-\frac{2\times\sqrt{3}\sqrt{xy}}{\sqrt{3}}+3y\right)+\left(\frac{2x}{3}-\frac{2\times\sqrt{2}\times\sqrt{3}\sqrt{x}}{\sqrt{2}\times\sqrt{3}}+\frac{3}{2}\right)-\frac{1}{2}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{3}}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2x}{3}}-\sqrt{\frac{3}{2}}\right)^2-\frac{1}{2}\)
\(\ge-\frac{1}{2}\)
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3