Biết 12/9=8/x=y/21
khi đó tổng bình phương x^2+y^2 bằng.........
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
a) Giải:
Ta có: \(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\) và \(x.y=1500\)
Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k,y=3k\)
Mà \(xy=1500\)
\(\Rightarrow5.k.3.k=1500\)
\(\Rightarrow k^2.15=1500\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
+) \(k=10\Rightarrow x=50,y=30\)
+) \(k=-10\Rightarrow x=-50;y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-50;-30\right);\left(50;30\right)\)
b) Hình như sai đề
Vì x, y tỉ lệ nghịch với 3; 5 nên:
3x = 5y => \(\frac{x}{5}=\frac{y}{3}\) Và x . y = 1500
Ta có: \(\frac{x}{5}=\frac{y}{3}\) \(=\frac{x.y}{5.y}=\frac{y}{3}\)
hay \(\frac{x}{5}=\frac{y}{3}=\frac{1500}{5.y}\)
=> \(y.5.y\) = 1500 . 3
\(5.y^2\) = 4500 => \(y^2\) = 900 => y = \(\sqrt{900}\) = 30
y = \(-\sqrt{900}\) = -30
+) Với y = 30 => x . 30 = 1500 => x = \(\frac{1500}{30}\) = 50
+) Với y = -30 => x . (-30) = 1500 => x = \(\frac{1500}{-30}\) = -50
Vậy x = 30 ; y = 50
hoặc x = -30 ; y = -50
a) Do y tỉ lệ thuận với x nên ta có đặt \(y=kx\)
Theo đó ta có và \(x_1^2+x_2^2=2;y_1^2+y_2^2=8\)
Ta có \(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow\frac{y_1^2}{x_1^2}=\frac{y_2^2}{x_2^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y_1^2}{x_1^2}=\frac{y_2^2}{x_2^2}=\frac{y_1^2+y_2^2}{x_1^2+x_2^2}=\frac{8}{2}=4\)
Vì \(\frac{y_1}{x_1}=\frac{y_2}{x_2}=k\Rightarrow\frac{y_1^2}{x_1^2}=k^2=4\Rightarrow k\in\left\{2;-2\right\}\)
b) Vậy ta có hai công thức \(y=2x\) hoặc \(y=-2x\)
a) 25x² - 10xy + y²
= (5x)² - 2.5x.y + y²
= (5x - y)²
b) 4/9 x² + 20/3 xy + + 25y²
= (2/3 x)² + 2.2/3 x.5y + (5y)²
= (2/3 x + 5y)²
c) 9x² - 12x + 4
= (3x)² - 2.3x.2 + 2²
= (3x - 2)²
d) Sửa đề: 16u²v⁴ - 8uv² + 1
= (4uv²)² - 2.4uv².1 + 1²
= (4uv² - 1)²