K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2022

Lời giải:

$x+x.\frac{1}{2}=\frac{9}{2}$

$x(1+\frac{1}{2})=\frac{9}{2}$

$x.\frac{3}{2}=\frac{9}{2}$

$x=\frac{9}{2}: \frac{3}{2}=3$

25 tháng 3 2021

mik ko bt

22 tháng 7 2021
trung bình cộng của các số 545,328,624,295 là bao nhiêu

5: \(\Leftrightarrow9\left(x^2-5x-4\right)=36\left(x+1\right)+8\left(x^2-10x\right)\)

\(\Leftrightarrow9x^2-45x-36-36x-36-8x^2+80x=0\)

\(\Leftrightarrow x^2-x-72=0\)

=>(x-9)(x+8)=0

=>x=9 hoặc x=-8

6: \(\Leftrightarrow x^2-9=9x-x^2-9+x\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0 hoặc x=5

23 tháng 1 2022

5, <=> 9x^2 - 45x - 36 = 36x + 36 + 8x^2 - 80x 

<=> x^2 - x - 72 = 0 <=> x = 9 ; x = -8 

6, <=> x^2 - 9 = 9x - x^2 - 9 + x = 10x - x^2 - 9 

<=> 2x^2 - 10x = 0 <=> x = 0 ; x = 5 

7, <=> (x-1)^2 = (3x+3)^2 

<=> (x-1-3x-3)(x-1+3x+3) = 0

<=> (-2x-4)(4x+2) = 0 <=> x = -2;x=-1/2

8, = (x^2-10x-15)(x^2-10x+25)

a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)

\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)

=>-2x=10

hay x=-5

d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)

\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)

\(\Leftrightarrow x^2+9x-90=0\)

\(\Leftrightarrow x\in\left\{6;-15\right\}\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

29 tháng 6 2023

Let's solve each equation step by step:

√(x^2 - 6x + 9) = 3 - x

Squaring both sides of the equation, we get:
x^2 - 6x + 9 = (3 - x)^2
x^2 - 6x + 9 = 9 - 6x + x^2

The x^2 terms cancel out, and we are left with:
-6x = -6x

This equation is true for any value of x. Therefore, there are infinitely many solutions.

x^2 - (1/2)x + 1/16 = x + 3/2

Moving all terms to one side of the equation, we get:
x^2 - (1/2)x - x + 3/2 - 1/16 = 0
x^2 - (3/2)x + 29/16 = 0

To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = -3/2, and c = 29/16. Plugging in these values, we get:
x = (3/2 ± √((-3/2)^2 - 4(1)(29/16))) / (2(1))
x = (3/2 ± √(9/4 - 29/4)) / 2
x = (3/2 ± √(-20/4)) / 2
x = (3/2 ± √(-5)) / 2

Since the square root of a negative number is not a real number, this equation has no real solutions.

√(x - 2)√(x - 1) = √(x - 1) - 1

Squaring both sides of the equation, we get:
(x - 2)(x - 1) = (x - 1) - 2√(x - 1) + 1
x^2 - 3x + 2 = x - 1 - 2√(x - 1) + 1
x^2 - 4x + 2 = -2√(x - 1)

Squaring both sides again, we get:
(x^2 - 4x + 2)^2 = (-2√(x - 1))^2
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4(x - 1)
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4x - 4

Rearranging terms, we have:
x^4 - 8x^3 + 20x^2 - 20x + 8 = 0

This equation does not have a simple solution and requires further calculations or approximation methods to find the solutions.

√9 - 4√5 - √5 = -2

Simplifying the left side of the equation, we get:
3 - 4√5 - √5 = -2
-√5 - 5 = -2
-√5 = 3

This equation is not true since the square root of a number cannot be negative.

Therefore, the given equations either have infinitely many solutions or no real solutions.

  
7 tháng 8 2018

ta có : \(A=\dfrac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)

ta có : \(B=\dfrac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{ 9-x^2}}{x\left(3-x\right)+\left(x+2\right)\sqrt{9-x^2}}\)

\(=\dfrac{\sqrt{x+3}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{3-x}+\left(x+2\right)\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{3-x}}\)