Cho a,b,c,d dương thay đổi sao cho a+b+c+d=1. Tìm GTLN của P=abc+bcd+cda+dab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )

Đặt A là vế trái của BĐT cần chứng minh và ký hiệu m là số bé nhất trong bốn số có ở mẫu của A.Như vậy \(m\ge abcd+1\)và
\(A\le\frac{a}{m}+\frac{b}{m}+\frac{c}{m}+\frac{d}{m}=\frac{a+b+c+d}{m}\le\frac{a+b+c+d}{1+abcd}\)
Vì \(a,b,c,d\in\left[0,1\right]\)nên
\(a+b\le1+ab;c+d\le1+cd;ab+cd\le1+abcd\)
\(\Rightarrow a+b+c+d\le3+abcd\)
vì thế \(A\le\frac{3+abcd}{1+abcd}\le3\)
Vậy Max là 3
có ai có cách giải dễ hiểu hơn ko? bn trên lm như vậy cx đc r nhưng trình bày chưa đc!

ta có
\(abc+bcd+cda+dab=1\Leftrightarrow abc+d\left(\right.a+b+c\left.\right)=1\)
biểu thức
\(P=4\left(\right.a^3+b^3+c^3\left.\right)+9d^3\)
ta có
\(a^3+b^3+c^3\geq3abc\Rightarrow4\left(\right.a^3+b^3+c^3\left.\right)\geq12abc\)
vì
\(P\geq12abc+9d^3\left(\right.1\left.\right)\)
từ trên ta có
\(abc+d\left(\right.a+b+c\left.\right)=1\)
Nếu \(d\) lớn thì \(a b c\) nhỏ ⇒ vế phải (1) lớn
Nếu \(d\) nhỏ thì \(a b c \approx 1\) ⇒ khi đó
\(P\approx12\cdot1+0=12\)
Vậy
giá trị nhỏ nhất của \(P\) là
\(minP=12\)
đạt được khi \(a = b = c = 1 , d \rightarrow 0^{+}\).
do đó
\(12\)
Về cơ bản thì bài này ko giải được
Theo kĩ thuật cân bằng hệ số AM-GM:
Gọi x là 1 hằng số dương nào đó, ta có:
\(a^3+b^3+x^3.d^3\ge3x.abd\)
Tương tự thì:
\(a^3+c^3+x^3.d^3\ge3x.acd\)
\(b^3+c^3+x^3.d^3\ge3x.bcd\)
Cộng vế:
\(2\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x.\left(bcd+cda+abd\right)\)
Đồng thời: \(x.\left(a^3+b^3+c^3\right)\ge3x.abc\)
Cộng vế:
\(\left(x+2\right)\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x\)
So sánh với biểu thức P thì ta cần tìm x sao cho:
\(\frac{x+2}{4}=\frac{3x^3}{9}\Rightarrow4x^3-3x-6=0\)
Đây là 1 pt ko thể giải được (ra 1 kết quả x đủ đẹp)



Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$

đề đúng hết ko v ?