So sánh S=1+3+3^2+3^3+...3^9 với 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^9\)
\(\Rightarrow S=\dfrac{2^{9+1}-1}{2-1}\)
\(\Rightarrow S=2^{10}-1\)
\(\Rightarrow S=2^2.2^8-1\)
\(\Rightarrow S=4.2^8-1< 5.2^8\)
Vậy \(S< 5.2^8\)
2S=2+2^2+..+2^10
=>2S-S=2^10-1
=>S=2^8.4-1
=>S<5.2^8
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(\Rightarrow S=2^{10}-1< 2^{10}=2^7.2^3=2^7.8\)
Do \(5.2^8=5.2.2^7=10.2^7>2^7.8\) nên \(5.2^8>2^{10}>2^{10}-1\)
\(\Rightarrow5.2^8>2^{10}-1\)
Vậy \(5.2^8>2^{10}-1\)
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = (2 + 22 + 23 + 24 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 < 210 = 22.28 = 4.28 < 5.28
=> S < 5.28
\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
=>2S=1-1/3^100
=>S=1/2-1/2*3^100<1/2
a) Ta có: 2003^152>2003^20>199^20
Vậy 2003^152>199^20
b) Ta có: 3^39=(3^13)^3=1594323^3
11^21=(11^7)^3=19487171^3
Vì 1594323^3<19487171^3 nên 3^39<11^21
S = 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29
2S = 2.( 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
2S = 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210
S = (2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210) - (20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
S = 210 - 20
ta có: 5 x 28 = ( 4 + 1) x 28 = 4 . 28 + 28 = 22 . 28 + 28 = 210 + 28
vì 210 - 20 < 210 + 28 nên S < 5 x 28