K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2022

    

a,  S = 1 + 3 + 32 + 33+.....+398

     3S =       3 + 32 + 33+......+ 398+ 399

3S- S =       399 - 1 

   2S =        399 - 1

     S =      ( 399-1):2

b, S = 1 + 3 + 32 + 33 +......+398

    S = 1 + ( 3 + 32 + 33) + ( 34 + 35 + 36) + .....+ (396+397+398)

    S = 1 + 3.( 1 + 3 + 32) + 34.( 1 + 3 + 32) +.....+ 396.( 1 + 3 + 32)

    S = 1 + 3. 13 + 34.13 + ......+396.13

   S =  1 + 13. ( 3 + 34 + ......+ 396)

  vì 13  ⋮ 13 ⇔ 13 .( 3 + 34+.....+396) ; 1 \(⋮̸\) 13 

⇔ S = 1 + 13 .( 3 + 34+.....+396\(⋮̸\) 13 (đpcm)

c, ta có S = ( 399-1): 2

⇔ 2S = 399 - 1

⇔ 2S = (34)24. 33- 1

⇔ 2S = \(\overline{...1}\) . 27 - 1

⇔ 2S = \(\overline{....7}\) - 1

⇔ 2S = \(\overline{....6}\)

vì 2 . 3 = 6;    và 2 . 8  = 16 ⇔ \(\left[{}\begin{matrix}S=\overline{...3}\\S=\overline{....8}\end{matrix}\right.\) 

vậy S không thể là số chính phương vì số chính phương không có tận cùng là 2; 3; 7; 8 (đpcm)

 

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)

 

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

29 tháng 10 2018

a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)

\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)

29 tháng 10 2018

a)   S= 1+3+3+33 +............+398

       S=(1+ 3+ 32) +...............+ (396 +397 +398)

       S= 13+..............+396x(1+3+33)

       S= 13+...............+396x13

       S=13x(1+..........396)

Vì 13x(1+...........396)  : 13 thì hết nên => S chia hết cho 13

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

20 tháng 12 2021

Mọi người giúp mik với nhé

có nên giúp ko nhể

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10