K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2022

a) Xét △ABC có:

DA = DB (gt)

FB = FC (gt)

=> DF là đường trung bình của △ABC

=> DF // AC

Xét tứ giác ADFC có:

DF // AC (cmt)

=> Tứ giác ADFC là hình thang

b) Ở câu này đề bài cho bị thiếu △ABC cân tại B, vì nếu không có yếu tối này thì AF không thể bằng BG được.                                                                                                                                                             c)  Xét tứ giác ABFH có:

AB // FH

AH // BF

=> Tứ giác ABFH là hình bình hành 

=> AH = BF mà BF = FC 

=> AH = FC

Xét tứ giác AHCF có:

AH // CF

AH = CF

=> AHCF là hình bình hành

=> AF // CH

d) Gọi M là giao điểm của AI và DH

Xét tứ giác ADIH có:

AD // IH

AH // DI

=> Tứ giác ADIH là hình bình hành

=> M là trung điểm của AI hay IM = \(\dfrac{1}{2}AI\)

mà AI =  IC ( vì AHCF là hình bình hành)

=> IM = \(\dfrac{1}{2}IC\) =>IM=\(\dfrac{1}{3}MC\)   

Xét △CHM có:

HK = \(\dfrac{1}{3}HC\)

IM=\(\dfrac{1}{3}MC\)             

=> IK // MH ( định lý đảo Ta-lét)

hay IK // DH (1)

Xét △ABC có:

AF, CD là trung tuyến

mà AF cắt CD tại J => J là trọng tâm của  △ABC

=> DJ = \(\dfrac{1}{3}DC\)              

Xét △DHC có:

 HK = \(\dfrac{1}{3}HC\)   

  DJ = \(\dfrac{1}{3}DC\)    

=> JK // DH (2)

Từ (1) và (2) theo tiên đề Ơ-lít ta có: J, I, K thẳng hàng.                                            

12 tháng 9 2023

A B C D F G x y H K I J

a/

FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

b/

Ax//BC => AH//FB

Fy//AB => FH//AB

=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC

Ta có Ax//BC => AH//FC

=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

=> AF//HC (cạnh đối hbh)

c/

DA=DB (gt)

FB=FC (gt)

=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)

\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)

Ta có AFCH là hbh (cmt) =>AF=HC

=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

AF//HC (cmt) => AJ//CK

=>AKCJ là hbh 

Nối J với K cắt AC tại I'

=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC

Mà I cũng là trung điểm AC

\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng

 

a: Sửa đề: Ex//BC, Ex cắt AC tại M

a: Xét ΔABC có

E là trung điểm của BA

EM//BC

=>M là trung điểm của AC

Xét ΔCAB có

E,M lần lượt là trung điểm của AB,AC

=>EM là đường trung bình

=>EM=1/2BC

=>EM=BF

Xét tứ giác EMFB có

EM//FB

EM=FB

góc FBE=90 độ

Do đó: EMFB là hình chữ nhật

b: Sửa đề: K đối xứng B qua M

Xét tứ giác BAKC có

M là trung điểm chung của BK và AC

góc ABC=90 độ

=>BAKC là hình chữ nhật

c: Xét tứ giác BGCE có
F là trung điểm chung của BC và GE

=>BGCE là hình bình hành

29 tháng 10 2023

ac thay vào bc bằng 4 nhé

 

29 tháng 10 2023

mk ghi nhầm

 

17 tháng 10 2021

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình củaΔBAC

Suy ra: EF//BC

11 tháng 11 2023

Bài 1:

a: Xét tứ giác ABEC có

D là trung điểm chung của AE và BC

nên ABEC là hình bình hành

Hình bình hành ABEC có \(\widehat{BAC}=90^0\)

nên ABEC là hình chữ nhật

b: ABEC là hình chữ nhật

=>AB//CE và AB=CE

AB=CE

AB=AF

Do đó: CE=AF

AB//CE

\(A\in BF\)

Do đó: BF//CE

=>FA//CE

Xét tứ giác AECF có

AF//CE

AF=CE

Do đó: AECF là hình bình hành

=>AE//CF

c: Xét tứ giác BECF có

BF//CE

nên BECF là hình thang

Hình thang BECF có \(EB\perp BF\)

nên BECF là hình thang vuông

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=10^2-8^2=36\)

=>AB=6(cm)

ABEC là hình chữ nhật

=>\(S_{ABEC}=AB\cdot AC=6\cdot8=48\left(cm^2\right)\)

ΔCAF vuông tại A

=>\(S_{ACF}=\dfrac{1}{2}\cdot AC\cdot AF=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\)

=>\(S_{ABEC}>S_{ACF}\)

14 tháng 12 2022

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hình thang

b: Xét tứ giác DECF có

DE//CF

DF//CE

Do đó: DECF là hình bình hành

=>DC cắt EF tại trung điểm của mỗi đường

=>E,M,F thẳng hàng

14 tháng 12 2022

giúp câu C cái song song vs chủ yếu đang cần câu C á

22 tháng 7

loading... 

a) ∆ABC vuông tại B (gt)

⇒ AB ⊥ BC

⇒ BM ⊥ BF

⇒ ∠MBF = 90⁰

Do EM // BC (gt)

⇒ EM // BF

EM // BC (gt)

E là trung điểm của AC (gt)

⇒ M là trung điểm của AB

⇒ EM là đường trung bình của ∆ABC

⇒ EM = BC : 2

F là trung điểm của BC (gt)

⇒ BF = CF = BC : 2

⇒ EM = BF = BC : 2

Tứ giác BMEF có:

EM // BF (cmt)

EM = BF = BC : 2 (cmt)

⇒ BMEF là hình bình hành

Mà ∠MBF = 90⁰ (cmt)

⇒ BMEF là hình chữ nhật

b) Do K đối xứng với B qua E (gt)

⇒ E là trung điểm của BK

Tứ giác BAKC có:

E là trung điểm của BK (cmt)

E là trung điểm của AC (gt)

⇒ BAKC là hình bình hành

Mà ∠ABC = 90⁰ (gt)

⇒ BAKC là hình chữ nhật

c) Do G đối xứng với E qua F (gt)

⇒ F là trung điểm của EG

∆ABC vuông tại B (gt)

E là trung điểm của AC (gt)

⇒ BE là đường trung tuyến ứng với cạnh huyền AC

⇒ BE = CE = AC : 2

Tứ giác BGCE có:

F là trung điểm của BC (gt)

F là trung điểm của EG (cmt)

⇒ BGCE là hình bình hành

Mà BE = CE (cmt)

⇒ BGCE là hình thoi

d) Để BGCE là hình vuông thì BE ⊥ CE

⇒ BE là đường cao của ∆ABC

Mà BE là đường trung tuyến của ∆ABC (cmt)

⇒ ∆ABC cân tại B

Lại có ∆ABC vuông tại B (gt)

⇒ ∆ABC vuông cân tại B

18 tháng 9 2021

\(a,\left\{{}\begin{matrix}BF=CF\\CE=EA\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF=\dfrac{1}{2}AB;EF//AB\Rightarrow EF//BM\)

Mà \(ME//BF\) nên BMEF là hbh

Mà \(\widehat{ABC}=90^0\) nên BMEF là hcn

\(b,\left\{{}\begin{matrix}BE=EK\\AE=EC\\\widehat{ABC}=90^0\end{matrix}\right.\Rightarrow BAKC\) là hcn

\(c,\left\{{}\begin{matrix}EF=FG\\CF=BF\end{matrix}\right.\Rightarrow BGCE\) là hbh

Mà \(CE=BE\left(t/c.hình.chữ.nhật.BAKC\right)\)

Vậy BGCE là hình thoi

\(d,BGCE\) là hình vuông \(\Leftrightarrow\widehat{CEB}=90^0\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow BE\) là đường cao tam giác ABC

Mà BE là trung tuyến tam giác ABC

Do đó tam giác ABC phải vuông cân

Vậy BGCE là hình vuông \(\Leftrightarrow\) tam giác ABC vuông cân