Bài 6: So sánh. A= 25678+31284+90275 và B=35275+2168+90274
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(25678>25275\)
\(31284>21688\)
\(90275>90274\)
\(\Rightarrow25768+31284+90275>25275+21688+90274\)
vậy A > B
\(\dfrac{11}{10}< \dfrac{9}{30}\)
\(\dfrac{6}{7}>\dfrac{3}{5}\)
\(\dfrac{25}{100}< \dfrac{3}{4}\)
a \(\dfrac{11}{10}>\dfrac{3}{10}\)
b \(\dfrac{30}{35}>\dfrac{21}{35}\)
c \(\dfrac{1}{4}< \dfrac{3}{4}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`3^12` và `5^8`
\(3^{12}=\left(3^3\right)^4=9^4\)
\(5^8=\left(5^2\right)^4=25^4\)
Vì `9 < 25` `=> 25^4 > 9^4`
`=> 3^12 > 5^8`
Vậy, `3^12 > 5^8`
`b)`
`(0,6)^9` và `(-0,9)^6`
\(\left(0,6\right)^9=\left(0,6^3\right)^3=\left(0,216\right)^3\)
\(\left(-0,9\right)^6=\left[\left(-0,9\right)^2\right]^3=\left(0,81\right)^3\)
Vì `0,81 > 0,216 => (0,81)^3 > (0,216)^3`
`=> (0,6)^9 < (-0,9)^6`
Vậy, `(0,6)^9<(-0,9)^6`
1.a) Có 312 = 33.4 = 274 ;
58 = 52.4 = 254
Dễ thấy 274 > 254 nên 312 > 58
b) Có \(0,6^9=\dfrac{6^9}{10^9}=\dfrac{6^{3.3}}{10^9}=\dfrac{216^3}{10^9}\)
mà \(\left(-0,9\right)^6=0,9^6=\dfrac{9^6}{10^6}=\dfrac{9^6.10^3}{10^9}=\dfrac{9^{2.3}.10^3}{10^9}=\dfrac{81^3.10^3}{10^9}=\dfrac{810^3}{10^9}\)
Dễ thấy \(\dfrac{216^3}{10^9}< \dfrac{810^3}{10^9}\Rightarrow0,6^9< \left(-0,9\right)^6\)
Bài 4: so sánh
a) 2.(-4) và (-2).4
b) 5.(-6) và 2.3
c) (-2).(-4).(-6) và 3.(-4).(-5)
giúp mình đc ko
Lời giải:
a. $2(-4)=2(-1).4=(-2).4$
b. $5(-6)<0< 2.3$
c. $(-2)(-4)(-6)< 0< 3(-4)(-5)$
a, 2.(-4) và (-2).4
2.(-4) = -8
(-2).4 = -8
Vậy 2.(-4) = (-2).4
b, 5.(-6) và 2.3
5.(-6) = -30
2.3 = 6
Vì -30 < 6
Vậy 5.(-6) < 2.3
c, (-2).(-4).(-6) và 3.(-4).(-5)
(-2).(-4).(-6) = - 48
3.(-4).(-5) = 3.4.5 = 60 -48 < 60
Nên (-2).(-4).(-6) < 3.(-4).(-5)
\(a,\dfrac{5}{3}>\dfrac{3}{5};b,\dfrac{6}{11}< \dfrac{9}{5};c,\dfrac{6}{11}=\dfrac{6}{11};d,\dfrac{8}{9}< \dfrac{8}{5}\)
a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)
1.
a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{6}{2}.\frac{10}{39}\)
\(=\frac{10}{13}\)
b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)
\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\frac{5}{28}\)
\(=\frac{15}{56}\)
\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
A = 147237;B = 127717. Vậy A lớn hơn B.