Tìm giá trị của k sao cho
Phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm x=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay `k=0` vào pt ta có:
`9x^2-25-0-0=0`
`<=>9x^2=25`
`<=>x^2=25/9`
`<=>x=+-5/3`
`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0
`=>9.1-25-k^2-2k(-1)=0`
`<=>-16-k^2+2k=0`
`<=>k^2-2k+16=0`
`<=>(k-1)^2+15=0` vô lý
Vậy khong có giá trị của k thỏa mãn đề bài
a) Ta có :
\(3x=3\left(x+2\right)\)
\(\Leftrightarrow3x=3x+2\)
\(\Leftrightarrow0=2\) ( vô lí )
Do đó pt đã cho vô nghiệm
b) Ta có \(\left|x\right|=-x^2-2\) (1)
Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)
VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)
Do đó : \(VT\ne VP\)
Vì vậy pt đã cho vô nghiệm
ĐKXĐ:...
\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\)
\(\Leftrightarrow2x^2+mx-4x+3-x^2+4x-4=0\)
\(\Leftrightarrow x^2+mx-1=0\)
\(\Leftrightarrow.....\)
Thay x=1 vào phương trình ta được:
2(2.1+1)+18=3(1+2)(2.1+k)
->24=9(2+k)
-> k=2/3
P/S: với dạng toán hỏi: tìm giá trị của k để biểu thức có nghiệm là x=\(x_0\)thì ta giái bằng cách thay nghiệm \(x_0\)đó vào phương trình rồi giải tìm ra k
2(2x+1)+18=3(x+2)(2x+k)
Thay x=1 vào phương trình trên :
2(2+1)+18=3(1+2)(2+k)
4+2+18=(3+6)(2+k)
24=6+3k+12+6k
-3k-6k=-24+6+12
-9k=-6
k=2/3