Tính: \(5\sin^230+3\cos60-\dfrac{3}{4}\tan^{2022}135\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại biểu thức A. Biểu thức $A$ sau khi rút gọn thì \(A=\frac{-2\sin ^2a}{3\cos 2a}\) vẫn phụ thuộc vào $a$
------------
Sử dụng công thức: \(\sin (90-a)=\cos a; \cot (90-a)=\tan a\), ta có:
\(B=\tan ^260(\sin ^8a-\cos ^8a)+4\cos 60(\cos ^6a-\sin ^6a)-\cos ^6a(\tan ^2a-1)^3\)
\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-\cos ^6a\left(\frac{\sin ^2a}{\cos ^2a}-1\right)^3\)
\(=3(\sin ^8a-\cos ^8a)+2(\cos ^6a-\sin ^6a)-(\sin ^2a-\cos ^2a)^3\)
\(=3(\sin ^2a-\cos ^2a)(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a)+2(\cos ^2a-\sin ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)
\(=3(\sin ^2-\cos ^2a)(\sin ^4a+\cos ^4a)-2(\sin ^2a-\cos ^2a)(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^3\)
\(=(\sin ^2a-\cos ^2a)[3(\sin ^4a+\cos ^4a)-2(\cos ^4a+\sin ^2a\cos ^2a+\sin ^4a)-(\sin ^2a-\cos ^2a)^2]\)
\(=(\sin ^2a-\cos ^2a).0=0\). Do đó giá trị của biểu thức không phụ thuộc vào $a$
a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).
a: \(\sin36^0-\cos54^0+\cos60^0\)
\(=\sin36^0-\sin36^0+\dfrac{1}{2}=\dfrac{1}{2}\)
b: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^230^0+\sin^260^0\right)\)
=1+1=2
`sin36^o -cos54^o +cos60^o`
`=cos54^o -cos54^o +cos60^o`
`=cos60^o=1/2`
_____________________________________________
`sin^2 10^o +sin^2 30^o +sin^2 80^o +sin^2 60^o`
`=cos^2 80^o +cos^2 60^o +sin^2 80^o +sin^2 60^o`
`=(cos^2 80^2 +sin^2 80^o )+(cos^2 60^o +sin^2 60^o )`
`=1+1=2`
\(A=\dfrac{2tan^2a+\dfrac{5}{cos^2a}}{4-\dfrac{3}{cos^2a}}=\dfrac{2tan^2a+5\left(1+tan^2a\right)}{4-3\left(1+tan^2a\right)}=...\) (bạn tự thay số bấm máy nhé)
\(B=\dfrac{3cot^2a-1}{cot^2a+2}=...\)
a/\(sina-1=2sin\dfrac{a}{2}.cos\dfrac{a}{2}-sin^2\dfrac{a}{2}-cos^2\dfrac{a}{2}=-\left(sin\dfrac{a}{2}-cos\dfrac{a}{2}\right)^2\)
b/\(P=\dfrac{cosa+cos5a+2cos3a}{sina+sin5a+2sin3a}=\dfrac{2cos3a.cos2a+2cos3a}{2sin3a.cos2a+2sin3a}=\dfrac{2cos3a\left(cos2a+1\right)}{2sin3a\left(cos2a+1\right)}=cot3a\)
c/\(P=sin\left(30+60\right)=sin90=1\)
d/
\(A=cos\dfrac{2\pi}{7}+cos\dfrac{6\pi}{7}+cos\dfrac{4\pi}{7}\Rightarrow A.sin\dfrac{\pi}{7}=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)
\(=\dfrac{1}{2}sin\dfrac{3\pi}{7}-\dfrac{1}{2}sin\dfrac{\pi}{7}+\dfrac{1}{2}sin\dfrac{5\pi}{7}-\dfrac{1}{2}sin\dfrac{3\pi}{7}+\dfrac{1}{2}sin\dfrac{7\pi}{7}-\dfrac{1}{2}sin\dfrac{5\pi}{7}\)
\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\Rightarrow A=-\dfrac{1}{2}\)
e/
\(tan\dfrac{\pi}{24}+tan\dfrac{7\pi}{24}=\dfrac{sin\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}}+\dfrac{sin\dfrac{7\pi}{24}}{cos\dfrac{7\pi}{24}}=\dfrac{sin\dfrac{\pi}{24}cos\dfrac{7\pi}{24}+sin\dfrac{7\pi}{24}cos\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}.cos\dfrac{7\pi}{24}}\)
\(=\dfrac{sin\left(\dfrac{\pi}{24}+\dfrac{7\pi}{24}\right)}{\dfrac{1}{2}cos\dfrac{\pi}{4}+\dfrac{1}{2}cos\dfrac{\pi}{3}}=\dfrac{2sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{4}+cos\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}+1}\)
a: sin a=2/3
=>cos^2a=1-(2/3)^2=5/9
=>\(cosa=\dfrac{\sqrt{5}}{3}\)
\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)
\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
b: cos a=1/5
=>sin^2a=1-(1/5)^2=24/25
=>\(sina=\dfrac{2\sqrt{6}}{5}\)
\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
c: cot a=1/tana=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>1/cos^2a=1+4=5
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)
\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {150^o} = \frac{1}{2};\tan {135^o} = - 1;\cot {45^o} = 1.\)
\( \Rightarrow A = \frac{1}{2} - 1 + 1 = \frac{1}{2}.\)
\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\cos {30^o} = \frac{{\sqrt 3 }}{2};\tan {150^o} = - \frac{{\sqrt 3 }}{3};\cot {135^o} = - 1.\)
\( \Rightarrow B = 2.\frac{{\sqrt 3 }}{2} - 3.\left( { - \frac{{\sqrt 3 }}{3}} \right) + 1 = 2\sqrt 3 + 1.\)
\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)
\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)
\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
Ta có:
\(1+tan^2x=\dfrac{1}{cos^2x}\)
\(\Leftrightarrow cos^2x=\dfrac{1}{1+tan^2x}\)
\(\Leftrightarrow cos^2x=\dfrac{1}{1+3^2}\)
\(\Leftrightarrow cosx=\sqrt{\dfrac{1}{10}}=\dfrac{\sqrt{10}}{10}\)
Mà: \(tanx=\dfrac{sinx}{cosx}\)
\(\Leftrightarrow sinx=tanx\cdot cosx\)
\(\Leftrightarrow sinx=3\cdot\dfrac{\sqrt{10}}{10}=\dfrac{3\sqrt{10}}{10}\)
Giá trị của A là:
\(A=\dfrac{\dfrac{3\sqrt{10}}{10}+4\cdot\dfrac{\sqrt{10}}{10}}{2\cdot\dfrac{3\sqrt{10}}{10}-\dfrac{\sqrt{10}}{10}}\)
\(A=\dfrac{\dfrac{3\sqrt{10}}{10}+\dfrac{4\sqrt{10}}{10}}{\dfrac{6\sqrt{10}}{10}-\dfrac{\sqrt{10}}{10}}\)
\(A=\dfrac{\dfrac{7\sqrt{10}}{10}}{\dfrac{5\sqrt{10}}{10}}\)
\(A=\dfrac{7}{5}\)
tan=3
=>sin=3*cos
\(A=\dfrac{sin+4cos}{2sin-cos}=\dfrac{3cos+4cos}{6cos-cos}=\dfrac{7}{5}\)