Cho a,b,c đôi một khác nhau thỏa mãn a+b+c=2022.
Tính giá trị biểu thức \(P=\dfrac{a^3+b^3+c^3-3\text{a}bc}{a^2+b^2+c^2-ab-ac-bc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)
\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
Lời giải:
Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$
$p,r\geq 0$
Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$
$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$
$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$
Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$
$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$
$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$
---------------------------
Thật vậy:
Áp dụng BĐT Schur thì:
$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$
Khi đó:
$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$
$\Rightarrow (*)$ được CM
$\Rightarrow P_{\min}=\frac{5}{2}$
Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị
\(P=\dfrac{a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3}{a^2+b^2+c^2-ab-bc-ca}=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c=2022\)