K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

a.-2 .(7 + x) < 0

ta có:- . + = - (khác 0)

 - < 0

=>7 + x = -1;-2;-3;-4;...

          x = -6;-5;-4;...

b.(x - 1) . (x + 2) < 0

ta có: - . + = -    hoặc + . - = -

  =>(x - 1) . ( x + 2) = - 

                   =>x = -1

c.(x^2 - 9).(2x + 10) = 0

=> (x^2 - 9) = 0 hoặc (2x + 10) = 0

x^2 - 9 =0

x^2      =0 + 9 

x^2      = 9

x         = 3 hoặc -3

2x + 10=0

2x       = 0 - 10

2x       = -10
x         = -10 : 2

x         = -5

vậy: x thuộc {3;-3;5}

d.(x - 2)^2 - 25=0

  (x - 2 )^2      = 0 + 25

  (x - 2)^2       = 25

  x - 2            =5

  x                 = 5 + 2

  x                 =7

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

25 tháng 10 2021

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

31 tháng 7 2021

a) \(\text{5x(x-2)+(2-x)=0}\)

\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\text{x(2x-5)-10x+25=0}\)

\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)

 

31 tháng 7 2021

c) \(\dfrac{25}{16}-4x^2+4x-1=0\)

\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)

\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)

\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)

\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)

\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)

\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

a) Ta có: \(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)

mà 7>0

nên (x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

mà \(\dfrac{2}{3}>0\)

nên x(x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-2;2\right\}\)

c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)

d) Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

11 tháng 1 2021

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

13 tháng 7 2021

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

30 tháng 7 2021

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

30 tháng 7 2021

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}