Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA.
a) Chứng minh: \(\Delta AMB=\Delta NMC\)
b) Chứng minh: \(\Delta AMC=\Delta NMB\)
c) Chứng minh: \(BN⊥AB\)
d) Chứng minh: CN//AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
a) Xét ∆AMC và ∆NMB có:
+ AM = NM (gt).
+ Góc AMC = Góc NMB (đối đỉnh).
+ CM = BM (M là trung điểm của BC).
=> ∆AMC = ∆NMB (c - g - c).
b) ∆AMC = ∆NMB (cmt).
=> Góc CAM = Góc BNM (cặp góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> AC // BN (dhnb).
c) ∆AMC = ∆NMB (cmt).
=> AC = NB (cặp cạnh tương ứng).
Xét tứ giác ACNB có:
+ AC = BN (cmt).
+ AC // BN (cmt).
=> Tứ giác ACNB là hình bình hành (dhnb).
=> AB // NC (tính chất hình bình hành).
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
Thằng kia ko tl thì cút,đừng có làm phiền người khác.Đã bị 20 vé báo cáo rồi đấy
Hình vẽ:
Giải:
a) Xét tam giác AMB và tam giác AMC, có:
\(AB=AC\left(gt\right)\)
\(MB=MC\) (M là trung điểm BC)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)
b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)
c) Xét tam giác AHM và tam giác AKM, có:
\(AH=AK\left(gt\right)\)
\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))
AM là cạnh chung
\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)
\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)
d) Ta có: \(AB=AC\left(gt\right)\)
Lại có: \(AH=AK\left(gt\right)\)
Lấy vễ trừ theo vế, ta được:
\(AB-AH=AC-AK\)
\(\Leftrightarrow BH=CK\)
Xét tam giác BHM và tam giác CKM, có:
\(BH=CK\) (Chứng minh trên)
\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)
\(MB=MC\) (M là trung điểm BC)
\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)
a.
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)
b.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)
c.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)
Xét \(\Delta AHM\) và \(\Delta AKM\) có :
\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)
\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)
=> MA là tia phân giác góc HMK
d.
AB=AC
AH=AK
=> BH=CK
AB=AC => tg ABC cân tại A
=> góc B = góc C
Xet \(\Delta BHM\) và \(\Delta CKM\) có :
\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)
xet tm giac AMB VA TAM GIAC NMC CO
AM=MN
CM=MB
M CHUNG
=>TAM GIÁC AMB=TAM GIÁC NM(CGC)
B,XÉT TAM GIÁC AMC VÀ TAM GIÁC NMB CÓ
MC=MB
AM=MN
M CHUG
=> TÂM GIACC AMC= TAM GIÁC NMB (CGC)
Còn câu c và d thì sao =-=