cho các số thực a, b,c thỏa mãn:a+b+c=6 và 0<a,b,c<4. Giá trị lớn nhất của P=a2+b2+c2+ab+ac+bclà:?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
vậy \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=6\)
Đề đúng không em nhỉ?
Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)
Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương
\(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)
Ta có:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự: \(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)
\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)
Cộng vế với vế:
\(\Rightarrow VT\ge2\left(a+b+c\right)=2\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu