K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

alodgdhgjkhukljhkljyutfruftyhf

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI

Sửa đề: Đường thẳng qua O song song với AB

Xét ΔAOB và ΔCOD có 

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//CD)

Do đó: ΔAOB\(\sim\)ΔCOD(g-g)

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{OA}{OB}=\dfrac{OC}{OD}=\dfrac{OA+OC}{OB+OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{OC}{OD}=\dfrac{AC}{BD}\)

\(\Leftrightarrow\dfrac{CO}{CA}=\dfrac{DO}{DB}\)(1)

Xét ΔDAB có 

M∈AD(gt)

O∈BD(gt)

MO//AB(gt)

Do đó:\(\dfrac{DO}{DB}=\dfrac{MO}{AB}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//AB(gt)

Do đó: \(\dfrac{CO}{CA}=\dfrac{ON}{AB}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{OM}{AB}=\dfrac{ON}{AB}\)

hay OM=ON(đpcm)

\(\Leftrightarrow OM+ON=MN=2\cdot ON\)
Xét ΔBCD có 

O∈BD(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{CD}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)(4)

Xét ΔABC có 

O∈AC(gt)

N∈BC(gt)

ON//DC(gt)

Do đó: \(\dfrac{ON}{AB}=\dfrac{CN}{CB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{ON}{AB}+\dfrac{ON}{CD}=\dfrac{BN}{BC}+\dfrac{CN}{BC}=1\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{ON}=\dfrac{2}{2\cdot ON}=\dfrac{2}{MN}\)(đpcm)

7 tháng 9 2019

vì oa=ob

=>tam giác aob là tam giác cân tại o (đn tam giác cân)

=>góc oab=góc oba

   mà  ab//cd 

=> abcd là hình thang cân

đúng thì k cho mik vs ạ