K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

\(\hept{\begin{cases}x=-2\\y=-3\end{cases}\hept{\begin{cases}x=-54\\y=-1\end{cases}\hept{\begin{cases}x=2\\y=3\end{cases}\hept{\begin{cases}x=54\\y=1\end{cases}}}}}\)

5 tháng 2 2017

x=3;y=2

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = b.z

Do đó, \(x = \dfrac{y}{a} = \dfrac{{b.z}}{a} = \dfrac{b}{a}.z\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x = \dfrac{y}{a}\)

                y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{y}{a} = \dfrac{{\dfrac{b}{z}}}{a} = \dfrac{b}{z}:a = \dfrac{b}{z}.\dfrac{1}{a} = \dfrac{{\dfrac{b}{a}}}{z}\)( \(\dfrac{b}{a}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên y = \(\dfrac{a}{x}\) nên x = \(\dfrac{a}{y}\)

              y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên y = \(\dfrac{b}{z}\)

Do đó, \(x = \dfrac{a}{y} = \dfrac{a}{{\dfrac{b}{z}}} = a:\dfrac{b}{z} = a.\dfrac{z}{b} = \dfrac{a}{b}.z\)( \(\dfrac{a}{b}\) là hằng số vì a,b là các hằng số)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)

29 tháng 10 2016

1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)

2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)

10 tháng 10 2018

Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\inℚ\right)\)

=>\(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

ta có xy=54

(=) 2k.3k=54

(=) \(6.k^2\)=54

(=) \(k^2=9\)

=> k=3

=> \(\hept{\begin{cases}x=2.3\\y=3.3\end{cases}\left(=\right)\hept{\begin{cases}x=6\\y=9\end{cases}}}\)

10 tháng 10 2018

Đặt : \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k;y=3k\)

Khi đó : \(2k.3k=54\)

\(\Rightarrow6k^2=54\)

\(\Rightarrow k^2=54:6=9=3^2\)

\(\Rightarrow k=3\)hoặc \(k=-3\)

\(\Rightarrow x=2.3=6\)\(;y=3.3=9\)hoặc

\(x=2.\left(-3\right)=-6\)\(;y=3.\left(-3\right)=-9\)

5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

nên x=5k; y=3k

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow25k^2-9k^2=4\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)

10 tháng 8 2021

bạn trả lời hết được không

5 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x}{9}=\frac{2y}{12}=\frac{3x-2y-z}{9-12-8}=\frac{20}{-11}\)

=>x=60/-11; y=120/-11; z=160/-11

31 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x-2y-z}{3\times3-2\times6-8}=\frac{20}{-11}\)

Do đó: \(x=\frac{-60}{11}\)\(y=\frac{-120}{11}\),\(z=\frac{-160}{11}\)