K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

NM
20 tháng 3 2022

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

26 tháng 10 2016

nhận xét chủ chương (sự chuẩn bị của nhà lý)

 

28 tháng 10 2016

???

28 tháng 11 2023

\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0

(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0

\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0

(\(x\) - 2).(\(x^4\) - y2 - 3) = 8

8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}

Lập bảng ta có:

\(x-2\) -8 -4 -2 -1 1 2 4 8
\(x\) -6 -2 0 1 3 4 6 10
\(x^4\) - y2 - 3 -1 -2 -4 -8 8 4 2 1
y  \(\pm\)\(\sqrt{1294}\) \(\pm\)\(15\) \(\pm\)1 \(\pm\)\(\sqrt{6}\) y2 = -10 (ktm) \(\pm\)\(\sqrt{249}\) \(\pm\)\(\sqrt{1291}\) \(\pm\)\(\sqrt{9996}\)

vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:

(\(x\); y) = (0; -1;); (0; 1)

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
$x^2-2y^2=5\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên 

$x^2-2y^2=5$

$\Leftrightarrow (2k+1)^2-2y^2=5$

$\Leftrightarrow 2k^2+2k-y^2=2$

$\Rightarrow y$ chẵn. Đặt $y=2t$ với $t$ nguyên

PT trở thành: $2k^2+2k-4t^2=2$
$\Leftrightarrow k^2+k-2t^2=1$

Điều này vô lý do $k^2+k-2t^2=k(k+1)-2t^2$ chẵn còn $1$ thì lẻ

Vậy pt vô nghiệm.