K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

VÌ AB+ÁC=49 CM =>2AB=56CM=>AB=28

=>AC=21

TAM GIÁC ABC VUÔNG TẠI A ,THEO ĐỊNH LÝ PYTAGO TA CÓ 

BC^2=AB^2-AC^2=28+21=784+441=35^2

VẬY BC=35 CM

21 tháng 2 2016

AB= (49+7) :2=28(cm)

AC=28-7=21(cm)

Áp dụng định lý Pytago:

AB2 +AC2=BC2

282+212=BC2

784+441=BC2

BC2=1225

=>BC=35(cm)

21 tháng 2 2016

AB= (49+7) :2=28(cm)

AC=28-7=21(cm)

Áp dụng định lý Pytago:

AB2 +AC2=BC2

282+212=BC2

784+441=BC2

BC2=1225

=>BC=35(cm)

đề bài sai nha

AC=AB=7 

Mà AB+AC=49

Vô lý

19 tháng 3 2020

Ta có AB = ( 49 + 7 ) : 2 = 28 ( cm )

AC = 49 - 28 = 21 ( cm )

Trong tam giác ABC  , áp dụng định lí Py - ta - go ta có :

 AB2 + AC2 = BC2

-> 282 + 212 = BC2

-> BC2 = 1255

-> BC = \(\sqrt{1255}\)= 35 ( cm )

 Vậy BC = 35 cm

Ta có: AB=13 cm

           BD=5 cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABD

AB^2=BD^2+AD^2

=> AD^2=AB^2-BD^2=13^2-5^2=144

=> AD=\(\sqrt{144}=12cm\)

Áp dụng định lí Py-ta-go vào tam giác vuông ADC

AC^2=AD^2+DC^2

=> DC^2=AC^2-AD^2=15^2-12^2=81

DC=\(\sqrt{81}=9cm\)

Câu 2 từ từ

Hình tự vẽ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Théo đề ta có: AB+AC=49

                       AB-AC=7

=> AB=(49+7)/2=28 cm

     AC=28-7=21 cm

Áp dụng định lí Py ta go vào tam giác vuông ABC 

BC^2=AC^2+AB^2=28^2+21^2=1225

BC=\(\sqrt{1225}=35cm\)

29 tháng 2 2016

1) Áp dụng định lý Py-ta-go cho tam giác vuông ABD, ta có:

AD2 + BD2 = AB2 => AD2 + 52 = 132 => AD2 = 132 - 52 = 169 - 25 = 144 = 122 => AD = 12 cm

Áp dụng định lý Py-ta-go cho tam giác vuông ADC, ta có: 

AD2 + DC2 = AC2 => 122 + DC2 = 15=> DC2 = 152 - 122 = 225 - 144 = 81 = 92 => CD = 9

2) AB = (49 + 7) : 2 = 28 cm

AC = 28 - 7 = 21 cm

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

AB2 + AC2 = BC2 = 282 + 212 = 352 => BC = 35 cm

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)

\(\Leftrightarrow HB=3\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow3\cdot HC=12\)

hay HC=4(cm)

\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)

\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

3 tháng 3 2017

Ta có:tam giác ABC có góc A=90 độ

=>Tam giác ABC vuông tại A.    

Ta có:AB/AC=3/4   =>AB/3=AC/4

ÁP DỤNG T/C DÃY TỈ SỐ BĂNG NHAU.TA CÓ

AB/3=AC/4=AB2+AC2/32+42=152/9+16=225/25=9

=>AB=

=>AC=

Bạn hãy tính đi nhé