K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2022

Ứng dụng tỉ số lượng giác của 2 góc phụ nhau để làm bài này, nhìn lại hình như bị ghi sai đề, có lẽ cos2200 mới đúng

1) \(\cot51^0=\tan39^0\)

\(\cot79^015'=\tan10^045'\)

Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)

2) \(\cos62^0=\sin28^0\)

\(\cos63^041'=\sin26^019'\)

\(\cos87^0=\sin3^0\)

Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)

15 tháng 7 2021

cos20,sin65,cos28,sin40,cos88 

Giải thích các bước giải:

 đổi sin40=cos(90-40)=cos50

sin65=cos(90-65)=cos25

a) \(\sin25^017'=\cos64^043'\)

b) \(\cos43^019'=\sin46^041'\)

c) \(\tan55^037'=\cot34^023'\)

d) \(\cot41^049'=\tan48^011'\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} =  - \cos {70^o} =  - \sin {20^o}\)

\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)

Ta có: \(\tan {110^o} =  - \tan {70^o} =  - \cot {20^o};\;\cot {110^o} =  - \cot {70^o} =  - \tan {20^o}.\)

\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)

a: \(A=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+...+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(B=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+...+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=\dfrac{9}{2}\)

25 tháng 10 2023

a: \(cos32=sin58;cos53=sin37;cos8=sin82\)

18<37<44<58<82

=>\(sin18< sin37< sin44< sin58< sin82\)

=>\(sin18< cos53< sin44< cos32< cos8\)

b: 20<45

=>\(sin20< tan20\)

\(cot8=tan82;cot37=tan53\)

20<40<53<82

=>\(tan20< tan40< tan53< tan82\)

=>\(tan20< tan40< cot37< cot8\)

=>\(sin20< tan20< tan40< cot37< cot8\)