4x^3=4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
\(PT\Leftrightarrow x^5-1=4\left(x^4+x^3+x^2+x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x^4+x^3+x^2+x+1=0\end{matrix}\right.\).
Nếu \(x^4+x^3+x^2+x+1=0\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\Leftrightarrow x=1\). Thử lại ta thấy không thoả mãn.
Do đó ta có \(x-1=4\Leftrightarrow x=5\).
Vậy...
.
a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)
b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)
c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)
a) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
c) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x-34=46\Leftrightarrow40x=80\Leftrightarrow x=2\)
\(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\\ ---\\ 4x^2-4x-3\\ =4x^2-4x+1-4\\ =\left(2x-1\right)^2-2^2=\left(2x-1-2\right)\left(2x-1+2\right)\\ =\left(2x-3\right)\left(2x+1\right)\)
1: =(2x)^2-2*2x*1+1^2
=(2x-1)^2
2: =4x^2-6x+2x-3
=2x(2x-3)+(2x-3)
=(2x-3)(2x+1)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((3\sin ^4x+\cos ^4x)(\frac{1}{3}+1)\geq (\sin ^2x+\cos ^2x)^2=1\)
\(\Leftrightarrow 3\sin ^4x+\cos ^4x\geq \frac{3}{4}\)
Dấu "=" xảy ra khi \(3\sin ^2x=\cos ^2x\). Mà $\sin ^2x+\cos ^2x=1$ nên suy ra:
$\sin ^2x=\frac{1}{4}; \cos ^2x=\frac{3}{4}$
$\Rightarrow A=(\frac{1}{4})^2+3(\frac{3}{4})^2=\frac{7}{4}$
Ta có:
\(3sin^4x+cos^4x=\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\Leftrightarrow4sin^2x=1\Rightarrow sin^2x=\frac{1}{4}\Rightarrow cos^2x=\frac{3}{4}\)
\(\Rightarrow A=\left(\frac{1}{4}\right)^2+3.\left(\frac{3}{4}\right)^2=\frac{7}{4}\)
4x3 = 4x
4x3 - 4x = 0
4x(x2 - 1) = 0
\(\Rightarrow\orbr{\begin{cases}4x=0\\x^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1;1\end{cases}}\)
Vậy x = { - 1;0; 1 }
thak you ạ