K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

4x3 = 4x

4x3 - 4x = 0

4x(x2 - 1) = 0

\(\Rightarrow\orbr{\begin{cases}4x=0\\x^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1;1\end{cases}}\)

Vậy x = { - 1;0; 1 }

5 tháng 2 2017

thak you ạ

4 tháng 10 2021

ta có 4 x 3 y 2   –   8 x 2 y 3   =   4 x 2 y 2 . x   –   4 x 2 y 2 . 2 y   =   4 x 2 y 2 ( x   –   2 y )    

Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)      

Đáp án cần chọn là: C

bấm đúng cho mik đi 

15 tháng 3 2021

\(PT\Leftrightarrow x^5-1=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=4\left(x^4+x^3+x^2+x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x^4+x^3+x^2+x+1=0\end{matrix}\right.\).

Nếu \(x^4+x^3+x^2+x+1=0\Rightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\Leftrightarrow x=1\). Thử lại ta thấy không thoả mãn.

Do đó ta có \(x-1=4\Leftrightarrow x=5\).

Vậy...

.

15 tháng 3 2021

mình cảm ơn bạn nhé 

 

 

 

 

14 tháng 10 2021

\(4x\left(x^2-5x+3\right)=4x^3-20x^2+12x\)

=> Chọn A

13 tháng 7 2018

a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)

b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)

c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)

13 tháng 7 2018

a) \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=\left(x^2+x\right)+\left(3x+3\right)\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

c) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2-4x\right)+\left(3x-12\right)\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

16 tháng 7 2018

          \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)

\(\Leftrightarrow\)\(16x^2-9-\left(16x^2-40x+25\right)=46\)

\(\Leftrightarrow\)\(40x-34=46\)

\(\Leftrightarrow\)\(40x=80\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

2 tháng 10 2019

\(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)

\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)

\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)

\(\Leftrightarrow40x-34=46\Leftrightarrow40x=80\Leftrightarrow x=2\)

x= 2 bấm máy tính là tự ra à

11 tháng 8 2023

\(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\\ ---\\ 4x^2-4x-3\\ =4x^2-4x+1-4\\ =\left(2x-1\right)^2-2^2=\left(2x-1-2\right)\left(2x-1+2\right)\\ =\left(2x-3\right)\left(2x+1\right)\)

1: =(2x)^2-2*2x*1+1^2

=(2x-1)^2

2: =4x^2-6x+2x-3

=2x(2x-3)+(2x-3)

=(2x-3)(2x+1)

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((3\sin ^4x+\cos ^4x)(\frac{1}{3}+1)\geq (\sin ^2x+\cos ^2x)^2=1\)

\(\Leftrightarrow 3\sin ^4x+\cos ^4x\geq \frac{3}{4}\)

Dấu "=" xảy ra khi \(3\sin ^2x=\cos ^2x\). Mà $\sin ^2x+\cos ^2x=1$ nên suy ra:

$\sin ^2x=\frac{1}{4}; \cos ^2x=\frac{3}{4}$

$\Rightarrow A=(\frac{1}{4})^2+3(\frac{3}{4})^2=\frac{7}{4}$

NV
10 tháng 4 2020

Ta có:

\(3sin^4x+cos^4x=\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\Leftrightarrow4sin^2x=1\Rightarrow sin^2x=\frac{1}{4}\Rightarrow cos^2x=\frac{3}{4}\)

\(\Rightarrow A=\left(\frac{1}{4}\right)^2+3.\left(\frac{3}{4}\right)^2=\frac{7}{4}\)