Cho tam giác ABC cân tại A có AB<BC.Trên cạnh BC lấy hai điểm M và N sao cho BM=CN=AB.
a)Chứng minh rằng tam giác AMN cân.
b)Tính các góc của tam giác AMN khi góc BAC=120 độ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)
\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
mà AC=AB(ΔBAC cân tại A)
nên AD=DC=AE=EB
Xét ΔADE có AE=AD(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Xét ΔADB và ΔAEC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
AD=AE(cmt)
Do đó: ΔADB=ΔAEC(c-g-c)
c) Ta có: ΔAED cân tại A(gt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BCDE có ED//BC(cmt)
nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)
nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Đặt x=góc BAC
=>góc ABC=góc ACB=90 độ-1/2*x
góc DAC=góc ACD=x
góc ABC=góc BDC=90 độ-x/2
=>góc DCB=180 độ-2*góc BAC=x
góc ACD+góc DCB=góc ABC=90 độ-x/2
=>5/2*x=90
=>x=36
=>góc BAC=36 độ
từ a kẻ đường thẳng song song với AM cắt AI tại O chứng minh tam giác OAN = ABC
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Xét tam gia ABM va ANC co:
AB = AC(gt)
\(\widehat{B}\) =\(\widehat{C}\) (gt)
BM =NC (gt)
=> \(\Delta\) ABM =\(\Delta\) ANC (C.G.C)