K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

→Xét x ≥ 1 thì: 
x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)² 
và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)² 
=> (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)² 
=> y⁴ nằm giữa 2 số chính phương liên tiếp 
=> pt đã cho vô nghiệm với x ≥ 1 
→Xét x = 0: tính được y = ± 1 => pt có 2 nº (0; -1) và (0;1) 
→Xét x = -1: y⁴ = -1 (vô nº) 
→Xét x ≤ -2: để dễ nhìn đặt z = -x => z ≥ 2 
pt trở thành: y⁴ = z⁶ - 3z³ + 1 
Ta thấy: z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2) 
=> z⁶ - 3z³ + 1 < (z³ - 1)² 
và (z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8) 
=> z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)² 
Do đó: (z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)² 
=> y⁴ nằm giữa 2 số chính phương liên tiếp 
=> pt đã cho vô nº với x ≤ -2 
Kết luận pt đã cho có 2 nº là (0; -1) và (0;1) 

13 tháng 4 2018

→Xét x ≥ 1 thì:  x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)²  và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)²  => (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)²  => y⁴ nằm giữa 2 số chính phương liên tiếp  => pt đã cho vô nghiệm với x ≥ 1  →Xét x = 0: tính được y = ± 1 => pt có 2 nº (0; -1) và (0;1)  →Xét x = -1: y⁴ = -1 (vô nº)  →Xét x ≤ -2: để dễ nhìn đặt z = -x => z ≥ 2  pt trở thành: y⁴ = z⁶ - 3z³ + 1  Ta thấy: z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2)  => z⁶ - 3z³ + 1 < (z³ - 1)²  và (z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8)  => z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)²  Do đó: (z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)²  => y⁴ nằm giữa 2 số chính phương liên tiếp  => pt đã cho vô nº với x ≤ -2  Kết luận pt đã cho có 2 nº là (0; -1) và (0;1) 

3 tháng 4 2017

4 tháng 11 2018

Đáp án C.

⇒ Chia 2 vế phương trình cho x 3  ta được:

x 3 + 1 x 3 + 3 x 2 + 1 x 2 + 6 x + 1 x = m   (*)

Đặt t = x + 1 x ⇒ t ≥ 2 , phương trình (*) m = t 3 + 3 t 2 + t - 6  

Xét f ( t ) = t 3 + 3 t 2 + 3 t - 6 trên  ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )

f ' ( t ) = 0 ⇔ t = - 1  

Bảng biến thiên:

⇒ f ( t ) ∈ ( - ∞ ; - 8 ] ∪ [ 20 ; + ∞ ) ∀ t ∈ ( - ∞ ; - 2 ] ∪ [ 2 ; + ∞ )  

⇒  Phương trình f (t) vô nghiệm  ⇔ m ∈ - 8 ; 20

⇒  Có 27 giá trị m nguyên thỏa mãn.

26 tháng 11 2021

Không phải lớp 3 nhe nhầm lớp rùi

19 tháng 5 2019

24 tháng 4 2019

25 tháng 5 2017

Đáp án B

2 tháng 7 2018

19 tháng 7 2021

\(x^4+y^4=3y^2+1\Leftrightarrow-y^4+3y^2+1=x^4\ge0\)

\(\Rightarrow-y^4+3y^2+1\ge0\Rightarrow\frac{3-\sqrt{13}}{2}\le y^2\le\frac{3+\sqrt{13}}{2}\)

Mà \(y\in Z\Rightarrow y^2\)là số chính phương \(\Rightarrow y^2=0;1\)

*\(y^2=0\Rightarrow x^4=1\Rightarrow x=-1;1\)

*\(y^2=1\Rightarrow x^4+1=3+1\Rightarrow x^4=3\Rightarrow x\notin Z\)

Vậy phương trình có nghiệm nguyên \(\left(-1;0\right),\left(1;0\right)\)

5 tháng 8 2019

Chọn đáp án D.

Bất phương trình tương đương với

trong đó hàm số f t = t 3 + 3 t  đồng biến trên R

Vậy  y c b t ⇔ x 2 - m x + 1 ≥ 0 , ∀ x

Có 5 số nguyên thoả mãn

16 tháng 12 2019

Đặt f(x) = x4 - 3x3 + x – 1.

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(0) = -1 < 0

            f(-1) = 1 – 3.(-1) – 1 – 1 = 2 > 0

⇒ f(0).f(-1) < 0

⇒ f(x) = 0 có ít nhất một nghiệm xo ∈ (-1; 0) ⊂ (-1 ; 3).

Do đó phương trình đã cho có nghiệm xo ∈ (-1; 3).