B=1/3+1/6+1/10+1/15+....+1/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả tử cả mẫu của các phân số trong A với 2 ta có:
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..........+\frac{2}{90}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.........+\frac{1}{90}\right)\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{9.10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}\)
\(=\frac{4}{5}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{2}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{4}{5}\)
Lời giải:
$A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+....+\frac{1}{45}$
$\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}$
$=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}$
$=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}$
$\Rightarrow A=\frac{4}{5}$
\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{36}\) + \(\dfrac{1}{45}\)
= \(\dfrac{2}{4}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + \(\dfrac{2}{30}\) + ... + \(\dfrac{2}{72}\) + \(\dfrac{2}{90}\)
= \(\dfrac{2}{2.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + \(\dfrac{2}{5.6}\) + ... + \(\dfrac{2}{8.9}\) + \(\dfrac{2}{9.10}\)
= 2 (\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))
= 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\)) = 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\)) = 2 . \(\dfrac{2}{5}\) = \(\dfrac{4}{5}\)Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)