K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B H M C 60

Ta thấy AM là trung tuyến mà vuống tại A

=> A= 90 độ 

Vì là trung tuyến 

=> CAM= 45

chi mk nha 

ko biết đúng ko nữa mik chỉ mới hc lp 6

4 tháng 2 2017

A B C H M

\(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

             Mà góc A=90góc B=600

\(\Rightarrow\widehat{C}=30^0\)

\(\Delta ABC\)vuông tại A\(\Rightarrow\)AM=\(\frac{BC}{2}\)

Mà BM=MC=\(\frac{BC}{2}\)

\(\Rightarrow\Delta AMC\)cân tại M

\(\Rightarrow\widehat{MAC}=\widehat{MCA}\)

Mà \(\widehat{MCA}=30^0\)

\(\Rightarrow\widehat{MAC}=30^0\)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a,Ta có :

\(AH\perp BC\left(GT\right)\Rightarrow\widehat{HAB}+\widehat{B}=90^o\)

Mà \(\widehat{B}+\widehat{C=90^o}\)( Trong tam giác vuông 2 góc nhọn phụ nhau )

\(\Rightarrow\widehat{HAB}=\widehat{C}\left(1\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\)có :

 AM là trung tuyến ứng với cạnh huyền BC ( GT )

\(\Rightarrow AM=MC=\frac{1}{2}BC\)( Tính chất )

Vì \(AM=MC\)

\(\Rightarrow\Delta AMC\)cân tại M ( Định nghĩa )

\(\Rightarrow\widehat{MAC}=\widehat{C}\)( Tính chất ) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{HAB}=\widehat{MAC}\left(DPCM\right)\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

24 tháng 10 2019

a)xét \(\Delta\)ABC vuông tại A có

\(\widehat{B}+\widehat{C}=90'\Rightarrow\widehat{C}=90'-30'=60'\)

\(\sin C=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\sin B}=\frac{6}{\sin30'}=12\left(cm\right)\)

\(\tan B=\frac{AC}{AB}\Rightarrow AC=AB.\tan B=6.\tan30'=2\sqrt{3}\left(cm\right)\)

b)Xét \(\Delta ABC\left(\widehat{BAC}=90'\right)AHvuôngócBC\)

\(AB^2=BC.HB\Rightarrow HB=\frac{AB^2}{BC}=\frac{6^2}{12}=3cm\)

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=6.2\sqrt{3}=12\sqrt{3}cm\)(1)

VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN CỦA TG ABC NÊN

\(MB=MC=\frac{BC}{2}=\frac{12}{2}=6cm\)

\(MB=MH+HB\)

\(\Rightarrow MH=MB-HB=6-3=3cm\)(2)

TỪ (1)và (2) SUY RA

\(S\Delta AHM=\frac{1}{2}AH.HM=\frac{1}{2}.12\sqrt{3}.3=18\sqrt{3}\approx31.18\left(cm^2\right)\left(do\Delta AHMvuôngtạiH\right)\)

26 tháng 3 2020

Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)image.pngCâu a) 

Dễ chứng minh ATNO là tứ giác nội tiếp

Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp

Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)

Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)

Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)

Cho nên: \(\widehat{BMN}=\widehat{TNA}\)

Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)

\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)

Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)

Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)

Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)

Vậy \(\widehat{BAN}=\widehat{CAM}\)

___________________________________________________________________________________________________________

Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)

image.png

Gọi giao DK cắt BF tại P

Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)

Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)

Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)

Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)

\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)

\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)

Từ (1);(2) và (3) suy ra đpcm

P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.

27 tháng 3 2020

CCFCXD

a) Xét ∆ vuông ABC có 

AM là trung tuyến 

=> AM = BM = CM 

=> ∆AMC cân tại M 

=> MAC = MCA 

Xét ∆ABH có : 

BHA + BAH + ABH = 180° 

=> BAH + ABH = 90° 

Xét ∆ABC có : 

ABC + BCA + BAC = 180° 

=> ABC + ACB = 90° 

=> BAH = MCA 

Mà MAC = MCA (cmt)

=> BAH = MAC 

b) Gọi I là giao điểm DE và AH 

Xét tứ giác DHEA có : 

BAC = 90° (gt)

MDA = 90° ( MD\(\perp\)AB )

HEA = 90° ( HE\(\perp\)AC)

=> DHEA là hình chữ nhật 

=> I là trung điểm DE và HA 

=> DI = IA 

=> ∆IDA cân tại I

=> IDA = IAD (1)

Vì MAC = MCA (2) (cmt)

Ta có : 

DAI + MAC = 90° 

MCA + MAC = 90° 

=> DAI = MCA ( cùng phụ với MAC )(3)

Từ (1) (2)(3) 

=> DAI = MAC = MCA 

Vì I là trung điểm DE 

=> ∆IAE cân tại I 

=> IAE = IEA 

Gọi giao điểm DE,AM là O 

Xét ∆ADE có : 

DAE + ADE + DEA = 180° 

=> ADE + DEA = 90° .

Mà IAE = IEA (cmt)

MAC = ADI (cmt)

=> MAE + IEA = 90° 

Xét ∆IAE có : 

IAE + IEA + AIE = 180° 

=> AIE = 90° 

Hay AM \(\perp\)DE(dpcm)