Cho A = 2+2^2+2^3+.....+2^60 Chứng tỏ A chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=2.(1+2)+..........+2^59.(1+2)
A=2.3+.........+2^59.3
A=3.(2+....+2^59) chia hết cho 3
Vậy suy ra A chia hết cho 3
A=2.(1+2+2^2)+........+2^58.(1+2+2^2)
A=2.7+..........+2^58.7
A=7.(2+.....+2^58) chia hết cho 7
Vậy A chia hết cho 7
A=2.(1+2+2^2+2^3)+.........+2^57.(1+2+2^2+2^3)
A=2.15+...........+2^57.15
A=15.(2+2^57) chia hết cho 15
Vậy A chia hết cho 15
![](https://rs.olm.vn/images/avt/0.png?1311)
b, Ta có
S= ( 2 + 22 ) + (23 +24 ) +..... + ( 2 999 + 2 1000 )
= 2. (2 +1 )+ 23 . ( 2+1) +... +2999. (2+1)
=2.3 +23.3+....+2999.3
= 3. ( 2 + 2 3 +...+ 2999)
Vì 3 chia hết cho 3 nên biểu thức trên chia hết cho 3
=> A chia hết cho 3
câu trên tương tự nhưng dễ hơn nên tự đi mà làm
dễ mà bạn. Chỉ cần nhóm 2 số đầu với nhau . Rồi cho số 2 ra ngoài
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
b) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)
\(=5\left(2+2^2+...+2^{58}\right)⋮5\)
Vậy \(A⋮5\)
c) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Vậy \(A⋮7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
Ta có A = 2 + 22 + 23 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2( 1 + 2 + 22 ) + 24( 1 + 2 + 22 ) + ... + 258( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = 7( 2 + 24 + ... + 258 ) ⋮ 7 vì 7 ⋮ 7
Vậy A ⋮ 7
giúp