K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 11 2022

Lời giải:
$x^2-4x+8=(x^2-4x+4)+4=(x-2)^2+4$

Ta thấy: $(x-2)^2\geq 0$ với mọi $x$ nên $x^2-4x+8=(x-2)^2+4\geq 4>0$ với mọi $x$ 

Ta có đpcm.

3 tháng 5 2018

Đúng đó. Nhưng ghi thêm: vậy đa thức trên vô nghiệm nha.

3 tháng 5 2018

Ghi 3 > 0 hơi trẻ trâu tí !!!

Nhưng vẫn đúng

Thiếu kết luận

28 tháng 5 2017

 ban nao giup minh vs mjnh vs

28 tháng 5 2017

1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)

2. 5(2x - 1)2 - 3(2x - 1) = 0

<=> (2x - 1).[5(2x - 1) - 3] = 0

<=> (2x - 1).(10x - 8) = 0

<=> (2x - 1) = 0 hoặc (10x - 8) = 0

<=> x = 1/2 hoặc x = 4/5

3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3

Do: (x - 2)2 > hoặc = 0 (với mọi x)

Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)

Hay (x - 2)2 + 3 > 0 (với mọi x)  => đpcm

2 tháng 1 2018

\(B=4x^2+y^2+12x-4xy-6y+16\)

\(=\left(4x^2+y^2+9-4xy-6y+12x\right)+7\)

\(=\left[\left(2x\right)^2+y^2+3^2-2.2x.y-2.y.3+2.2x.3\right]+7\)

\(=\left(2x-y+3\right)^2+7\)

Ta có :

\(\left(2x-y+3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(2x-y+3\right)^2+7\ge7>0\forall x,y\)

Hay B > 0 với mọi x,y

3 tháng 1 2018

Ta có : \(B=\left(2x\right)^2-2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+y^2-6y+16\)

\(=\left(2x-y+3\right)^2-y^2+6y-9+y^2-6y+16\)

\(=\left(2x-y+3\right)^2+7\)

\(\left(2x-y+3\right)^2\ge0\forall x,y\Rightarrow B\ge7\)

hay B > 0 với mọi x,y

1 tháng 1 2018

ta có 

B=\(4x^2+y^2+9-4xy+12x-6y+7=\left(2x-y+3\right)^2+7>0\left(ĐPCM\right)\)

Ta có: 

\(B=4x^2+y^2+12x-4xy-6y+16\)

\(\Leftrightarrow B=4x^2+y^2+9-4xy+12x-6y+7\)

\(\Leftrightarrow B=\left(2x-y+3\right)^2+7\)

Mà \(\left(2x-y+3\right)^2\ge0\Rightarrow\left(2x-y+3\right)^2+7>0\)

9 tháng 3 2018

a/ \(-x^2-4x-8=0\)

\(\Leftrightarrow-x^2-2x-2x-8=0\)

\(\Leftrightarrow-\left[x^2+2x+2x+8\right]=0\)

\(\Leftrightarrow-\left[x\left(x+2\right)+2\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]=0\)

Với mọi x ta có :

\(+,\left(x+2\right)^2\ge0\)

\(+,4>0\)

\(\Leftrightarrow\left(x+2\right)^2+4>0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]< 0\)

\(\Leftrightarrow-x^2-4x-8\) vô nghiệm

b/ \(2x^2+4x+7=0\)

\(\Leftrightarrow2x^2+2x+2x+7=0\)

\(\Leftrightarrow2\left(x^2+x+x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow2\left[x\left(x+1\right)+\left(x+1\right)+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left(x+1\right)^2+5=0\)

Với mọi x ta có :

\(2\left(x+1\right)^2\ge0\)

\(5>0\)

\(\Leftrightarrow2\left(x+1\right)^2+5>0\)

\(\Leftrightarrow2x^2+4x+7\) vô nghiệm