K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: BC=29cm

Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)

nên \(AB=\dfrac{20}{21}AC\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{20}{21}AC\right)^2+AC^2=29^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{841}{441}=841\)

\(\Leftrightarrow AC^2=441\)

hay AC=21(cm)

Ta có: \(AB=\dfrac{20}{21}AC\)(cmt)

nên \(AB=\dfrac{20}{21}\cdot21=20\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=20+21+29=70\left(cm\right)\)

22 tháng 4 2018

bạn tự vẽ hình nhak.

xet tam giác coh vuông tại h=> góc coh nhọn => góc coa tù=> hod tù => odh nhọn=> hod > odh => hd>oh (quan hệ giữa góc và cạnh đối diện)

k cho mình nhak

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB

14 tháng 2 2016

. Bán kính đường tròn ngoại tiếp tam giác ABC có độ dài bằng 15

=>AO=OB=OC=15

xét tam giác AHO vuông tai H

=>HO=căn(15^2-14.4^2)=4.2

=>BH =BO-HO=15-4.2=10.8

Xét tam giác ABH vuông tại H

=>AB=căn(14.4^2+10.8^2)=18

=>BC=2OC=2*15=30

=>AC=căn(30^2-18^2)=24

=>AB+AC=18+24=42

10 tháng 8 2016

bài này khó quá bạn ạ

12 tháng 8 2016

bạn lên học 24 đi nhiều người giỏi lắm . t hen

31 tháng 3 2019

vẽ hình giùm mình với

31 tháng 3 2019

Không biết vẽ .

2 tháng 3 2019

A B C H D E 1 1 2 3 1 1

                                                                 CM

Trên BC lấy D sao cho BA=BD.Trên AC lấy E sao cho AE=AH.

Xét \(\Delta BAD\)có BA=BD ( cách vẽ )

\(\Rightarrow\Delta BAD\)cân tại A ( định lý )

\(\Rightarrow\widehat{BAD}=\widehat{D1}\)( Tính chất )      (1)

Ta có: \(\widehat{BAD}+\widehat{A3}=\widehat{BAC}\)( hình vẽ )

          \(\widehat{BAD}+\widehat{A3}=90^0\) (2)

Xét \(\Delta HAD\)có \(\widehat{H1}+\widehat{A2}+\widehat{D1}=180^0\)( Định lý )

                                              \(\widehat{A2}+\widehat{D1}=90^0\)(3)

Từ (1) , (2) , (3) \(\Rightarrow\widehat{A2}=\widehat{A3}\)

Xét \(\Delta AHD\)và \(\Delta AED\)có:

           \(\hept{\begin{cases}AH=AE\left(c.ve\right)\\\widehat{A2}=\widehat{A3}\left(cmt\right)\\ADchung\end{cases}\Rightarrow\Delta AHD=\Delta AED\left(c-g-c\right)}\)

 \(\Rightarrow\widehat{H1}=\widehat{E1}\)( 2 góc tương ứng ) mà \(\widehat{H1}=90^0\Rightarrow\widehat{E1}=90^0\).

 \(\Rightarrow EC\perp DC\)tại E 

Xét \(\Delta DEC\)vuông tại A ( cmt ) \(\Rightarrow DC>EC\)( quan hệ giữa góc và cạnh trong tam giác vuông )

                      \(\Rightarrow AE+DC>AE+EC\)

                      \(\Rightarrow AE+DC>AC\) 

                      \(\Rightarrow AE+BD+DC>AC+BD\) 

                       \(\Rightarrow AE+BC>BD+AC\)  

                       \(\Rightarrow AH+BC>AB+AC\)( đpcm )

 Mọi người có thể tham khảo.