K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

dài thế

23 tháng 10 2016

a, Gọi thương phép chia là Q(x) khi đó, ta có:

            2x+ ax +1 = (x-3).Q(x) +4

 Với x=3 ta có:   2.32 + 3a +1= 0.Q(x) +4

                                19+3a   = 4

   =>         3a= -15

    =>           a= -5

Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số

1 tháng 11 2020

Đặt \(\hept{\begin{cases}f\left(x\right)=ax^5+5x^4-9\\g\left(x\right)=x-1\end{cases}}\)

Ta có : f(x) bậc 5, g(x) bậc 1

=> Thương bậc 4

Lại có f(x) có hệ số cao nhất là a

Nên đặt thương là h(x) = ax4 + bx3 + cx2 + dx + 9

Khi đó : f(x) chia hết cho g(x)

⇔ f(x) = g(x).h(x)

⇔ ax5 + 5x4 - 9 = ( x - 1 )( ax4 + bx3 + cx2 + dx + 9 )

⇔ ax5 + 5x4 - 9 = ax5 + bx4 + cx3 + dx2 + 9x - ax4 - bx3 - cx2 - dx - 9

⇔ ax5 + 5x4 - 9 = ax5 + ( b - a )x4 + ( c - b )x3 + ( d - c )x2 + ( 9 - d )x - 9

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}a=a\\b-a=5\\c-b=0\end{cases}};\hept{\begin{cases}d-c=0\\9-d=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=c=d=9\\a=4\end{cases}}\)

Vậy a = 4

Tao tính làm = Bézoute cho nhanh nhưng không biết cách diễn đạt --

1 tháng 11 2020

Đặt: \(f\left(x\right)=ax^5+5x^4-9\)

Theo định lý Bézout thì số dư trong phép chia f(x) cho x - 1 là:
\(f\left(1\right)=a\cdot1^5+5\cdot1^4-9\)

\(=a+5-9\)

\(=a-4\)

Vậy để phép chia f(x) cho x - 1 là phép chia hết thì

a - 4 = 0 

=> a = 4 

Vậy a = 4 

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

=>a=-12

b: \(\Leftrightarrow ax^5-ax^4+\left(a+5\right)x^4-\left(a+5\right)x^3+\left(a+5\right)x^3-\left(a+5\right)x^2+\left(a+5\right)x^2-\left(a+5\right)x+\left(a+5\right)x-a-5+a-4⋮x-1\)

=>a-4=0

=>a=4

31 tháng 12 2022

1: \(\dfrac{f\left(x\right)}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)

=2x^2+(a+6)+3a+19/x-3

Để f(x)/x-3 dư 4 thì 3a+19=4

=>3a=-15

=>a=-5

2: \(\dfrac{f\left(x\right)}{x-5}=\dfrac{3x^2-15x+\left(a+15\right)x-5a-75+5a+102}{x-5}\)

\(=3x+a+15+\dfrac{5a+102}{x-5}\)

Để dư là 27 thì 5a+102=27

=>5a=-75

=>a=-15

27 tháng 11 2021

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)