x/5=y/6 và x+y=33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`5,`
Ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{3}=\dfrac{2y}{10}=\dfrac{3z}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot3=-9\\y=-3\cdot5=-15\\z=-3\cdot6=-18\end{matrix}\right.\)
Vậy, `x = -9; y = -15; z = -18.`
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)
mà 4x-y=42
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)
=>\(x=7\cdot3=21;y=6\cdot7=42\)
2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x-2y+3z=33
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)
=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)
3: \(\dfrac{x}{y}=\dfrac{6}{5}\)
=>\(\dfrac{x}{6}=\dfrac{y}{5}\)
mà x+y=121
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)
=>\(x=11\cdot6=66;y=11\cdot5=55\)
Tìm các cặp số nguyên x,y biết
đề là vậy á xin lỗi vì quên ghi đề
x - 1 = 33 => 33 +1=34
x - 1 = 1 => x = 2
x - 1 = 3 => x = 4
x - 1 = 11 => x = 12
y + x => y + 34 = 33=> 33 - 34 ko được loại
y + x => y + 2 = 33 => 33 - 2 = 31 nhận
y+x=33 => y + 4 = 33 => y = 29 ok
y + x = 33 => y + 12 =33=> 33 - 12 =21 ok
vậy x= 2 , 4 hay 12
y=31,29 hoặc 21
a) Ta có : \(\left(x+3\right)\left(y+2\right)=1\)
Vì \(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau :
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | -1 | 1 |
y | -3 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-3\right);\left(-4;-1\right)\right\}\)
Các phần sau làm tương tự
a) (x+3).(y+2)=1
=>x+3 và y+2 thuộc Ư(1)={1;-1}
Ta có bảng sau
x+3 | 1 | -1 |
y+2 | 1 | -1 |
x | -2 | -4 |
y | -1 | -3 |
Vậy....
Các câu khác lm tương tự nha
\(\dfrac{x}{5}=\dfrac{y}{6}và x+y=33\)
Ta có \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x+y}{5+6}=\dfrac{33}{11}=3\)
⇒\(\dfrac{x}{5}=3\Rightarrow x=3.5=15\)
\(\dfrac{y}{6}=3\Rightarrow y=3.6=18\)
Vậy x=15; y=18