Cho tam giác ABC cân tại A. Kẻ BD\(⊥\)AC (D\(\in\)AC) và CE\(⊥\)AB (E\(\in\)AB)
a) Chứng minh: BD=CE;
b) Chứng minh: Tam giác AED là tam giác cân;
c) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc A và AI\(⊥\)BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE và AD=AE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EB=DC
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
ˆBADBAD^ chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: ˆOCB=ˆOBCOCB^=OBC^
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC
E C B A D I
A)Xét tam giác ADB và tam giác AEC có
\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{A}chung\)
Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)
=> BD=CE( 2 CẠNH T/Ư)
B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)
=> Tam giác AED là tam giác cân
C) câu c) mk chư bt lm
c ) +)Xét tam giác AEI và tam giác ADI có :
\(\widehat{E}=\widehat{D}\left(=90\right)^o\)
AE = AD ( cmt )
AI chung
=> Tam giác AEI = Tam giác ADI ( ch - cgv)
=> Góc DAI = Góc EAI ( hai góc tương ứng )
Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )
+) Gọi điểm H là giao của BC và AI .
Xét tam giác ABC có :
BD là đường cao thứ nhất
CE là đường cao thứ hai
=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )
=> \(Ah⊥BC\)
Mà I thuộc AH => \(AI⊥BC\)