Cho tam giác ABC vuông tại A. D là trung điểm của BC. Nối A với D. Chứng minh: AD=BD=CD. Bài này bắt buộc phải vẽ thêm. Anh/chị nào giải giùm em với ạ, đúng em tick cho. Thanks all!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADB và tam giác ACD
có AB=AC (tam giác ABC cân tại A)
AD chung
góc ABD = góc ACD = 90độ
suy ra tam giác ADB = tam giác ACD (cạnh huyền-cạnh góc vuông)
suy ra BD=DC (hai cạnh tương ứng) (1)
b) Từ (1) suy ra D thuộc đường trung trực của BC (2)
mà tam giác ABC cân tại A suy ra AB=AC suy ra A thuộc đường trung trực của BC (3)
Từ (2) và (3) suy ra AD là đường TT của BC
Bạn tự vẽ hình nha
a,\(\Delta AMC\)và \(\Delta DMB\)có :
\(AM=MD\)( M là trung điểm của AD )
\(\widehat{AMC}=\widehat{DMB}\)( Hai góc đối đỉnh )
\(MC=MB\)( M là trung điểm của BC )
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b, \(\Delta BAM\)và \(\Delta CDM\)có :
\(BM=CM\)( M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( Hai góc đối đỉnh )
\(AM=MD\)( M là trung điểm của AD )
\(\Rightarrow\Delta BAM=\Delta CDM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( Hai góc tương ứng )
Mà \(\widehat{ABM}\)và \(\widehat{DCM}\)ở vị trí so le trong
\(\Rightarrow AB//CD\)( Dấu hiệu )
c, Vì \(CF\perp AB\)( Giả thiết )
\(AB//CD\)( Chứng minh trên )
\(\Rightarrow CF\perp CD\)( Quan hệ từ vuông góc đến song song )
d, Bạn tự chứng minh nhé