K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

Sửa câu c:  DE // BE thành DE // BC nhé

A B C D E O

GT 

 △ABC cân tại A.                                       

 D \in  AC; E \in  AB  : AD = AE

 BD ∩ ED = { O }

KL

 a, DB = EC

 b, △OBC cân; △ODE cân

 c, DE // BE 

Bài giải:

a, Vì △ABC cân tại A (gt) => AB = AC

Xét △BAD và △CAE 

Có: AB = AC (cmt)

  BAC là góc chung

      AD = AE (gt)    

=> △BAD = △CAE (c.g.c)

=> DB = CE (2 cạnh tương ứng)

b, Vì △BAD = △CAE (cmt)

=> ABD = ACE (2 góc tương ứng) và ADB = CEA (2 góc tương ứng)

Ta có: CEA + CEB = 180o (2 góc kề bù)

ADB + BDC = 180o (2 góc kề bù)

Mà ADB = CEA (cmt)

=> CEB = BDC 

Lại có: AB = AE + EB

AC = AD + DC

Mà AB = AC (gt) ; AD = AE (gt)

=> EB = DC

Xét △BOE và △COD

Có: OBE = OCD (cmt)

         BE = CD (cmt)

      BEO = CDO (cmt)

=> △BOE = △COD (g.c.g)

=> OB = OC (2 cạnh tương ứng) và OE = OD (2 cạnh tương ứng)

Xét △OED có: OE = OD (cmt) => △OED cân tại O

Xét △OBC có: OB = OC (cmt) => △OBC cân tại O

c, Xét △AOD có: AE = AD (gt) => △AOD cân tại A => AED = (180o - EAD) : 2    (1)

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2                                               (2)

Từ (1) và (2) => AED = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> ED // BC (dhnb)

8 tháng 2 2020

ok thanks

17 tháng 2 2020

ABCEDO

a) Xét △ABD và △ACE có:

           AB = AC (gt)

           \(\widehat{A}\) chung

           AD = AE (gt)

\(\Rightarrow\)△ABD = △ACE (c.g.c)

\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)

b) Ta có :△ABD = △ACE

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)  (cặp góc tương ứng)

Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)

\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\)△OBC cân tại đỉnh O

\(\Rightarrow\)OB = OC

Ta có: DB = EC (cmt)

           OB = OC

\(\Rightarrow\)DB - OB = EC - OC

\(\Rightarrow\)OE = OD

\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)

c) △OBC cân tại đỉnh O

\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)

    △ODE cân tại đỉnh O

\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)

Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)

\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)

Vì 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\)DE // BC (ĐPCM)

2 tháng 3 2022

đúng đúng haha

19 tháng 2 2020

a) Xét ΔABD và ΔACE có:

AB=ACAB=AC (do ΔABC cân đỉnh A)

ˆA^ : góc chung

AD=AE (giả thiết)

⇒ΔABD=ΔACE (c.g.c)

⇒DB=EC (hai cạnh tương ứng)

b) ΔABD=ΔACE⇒ˆB1=ˆC1 (hai góc tương ứng)

Mà ˆABC=ˆACB (do ΔABC cân đỉnh A)

⇒ˆABC−ˆB1=ˆACB−ˆC1

⇒ˆOBC=ˆOCB

⇒ΔOBC cân đỉnh O (đpcm)

18 tháng 4 2018

 

11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng

1) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)

\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)

Vậy: \(\widehat{B}=65^0\)\(\widehat{C}=65^0\)

2) Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

3) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(cmt)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

4) Ta có: ΔDBC=ΔECB(cmt)

nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)

và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ODE}=\widehat{OED}\)

Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

20 tháng 1 2021
Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC