cho tam giác ABC cân tại a kẻ tia bx vuông góc với ab , kẻ cy vuông góc ac gọi I là giao điểm của bx và cy
chung minh AI VUONG GOC VOI BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
a) Xét tam giác ABM và ACM, ta có:
AB=AC (gt)
AM:chung
Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)
b)gọi giao điểm của AM,BC là D
Xét tam giác ADB và ADC, ta có
AB=AC(gt)
GÓC BAD=CAD(tam giác ABM=ACM)
AD: chung
Vậy tam giác ADB=ADC(c.g.c)
Góc ADB=ADC(2 góc tương ứng)
mà ADB+ADC=180( kề bù)
Vậy góc ADB=ADC=90
AM vuông góc với BC
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH
Trả lời................
Tớ ko biết đúng hay sai nha:
a) Vì ΔΔABC cân tại A
=> AB = AC và ABCˆABC^ = ACBˆACB^
hay KBCˆKBC^ = HCBˆHCB^
Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:
BC chung
KBCˆKBC^ = HCBˆHCB^ (c/m trên)
=> ΔΔCKB = ΔΔBHC (ch - gn)
=> KB = HC (2 cạnh t/ư)
Ta có: AH + HC = AC
AK + KB = AB
mà AB = AC; KB = HC
=> AH = AK
b)
) Xét ΔΔAHB và ΔΔAKC có:
AH = AK (câu a)
BACˆBAC^ chung
AB = AC (câu a)
=> ΔΔAHB = ΔΔAKC (c.g.c)
=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)
hay KBIˆKBI^ = HCIˆHCI^
Xét ΔΔKBI và ΔΔHCI có:
KB = HC (câu a)
KBIˆKBI^ = HCIˆHCI^ (c/m trên)
BKIˆBKI^ = CHIˆCHI^ (= 90o)
=> ΔΔKBI = ΔΔHCI (g.c.g)
=> KI = HI (2 cạnh t/ư)
Xét ΔΔAKI và ΔΔAHI có:
KI = HI (c/m trên)
AI chung
AK = AH (câu a)
=> ΔΔAKI = ΔΔAHI (c.c.c)
=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)
Do đó AI là tia pg của AˆA^.
c)
c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o
mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ