K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Bạn viết cái j vậy

4 tháng 10 2019

D = 7^2013 - 7^2012 + 7^2011 - ... + 7 - 1

7D = 7^2014 - 7^2013 + 7^2012 - ... + 7^2 - 7

7D + D = 7^2014 - 1 

8D = 7^2014 - 1

D = (7^2014 - 1) : 8

4 tháng 10 2019

\(D=7^{2013}-7^{2012}+7^{2011}-7^{2010}+...+7^2+7-1\)

\(\Rightarrow7D=7^{2014}-7^{2013}+7^{2012}-7^{2011}+...+7^3+7^2-7\)

     \(8D=7^{2014}-1\)( Cái chỗ này là bạn lấy 7D + D rồi bỏ ngoặc thì các số hạng triệt tiêu đi còn như trên nhé )

\(\Rightarrow D=\frac{7^{2014}-1}{8}\)

30 tháng 1 2017

S = 72013 - 72012 + 72011 - 72010 + ....+ 73 - 72 + 7 - 1 

= ( 72013 - 72012 ) + ( 72011 - 72010 ) + ....+ ( 73 - 72 ) + ( 7 - 1 )

= 72012 ( 7 - 1 ) + 72010 ( 7 - 1 ) + .... + 72 ( 7 - 1 ) + ( 7 - 1 )

= 72012.6 + 72010.6 + .... + 72.6 + 6

= 6.( 72012 + 72010 + .... + 72 + 1 ) chia hết cho 6 ( đpcm )

30 tháng 1 2017

S = 72013 - 72012 + 72011 - 72010 + .... + 7 - 1

=> 7S = 7( 72013 - 72012 + 72011 - 72010 + .... + 7 - 1 )

= 72014 - 72013 + 72012 - 72010 + ... + 72 - 7

=> S + 7S = (72013 - 72012 + 72011 - 72010 + .... + 7 - 1) + ( 72014 - 72013 + 72012 - 72010 + ... + 72 - 7 )

8S = - 1 + 72014 = 72014 - 1

=> \(S=\frac{7^{2014}-1}{8}\)

Ta có : 72014 = ( 72 )1007 = 491007 = ......9

=> 72014 - 1 = .....9 - 1 = .......8

\(\Rightarrow S=\frac{......8}{8}=......1\)

Vậy cs tận cùng của S là 1

30 tháng 1 2017

mình ko thích dạng bài này 

11 tháng 10 2020

moi người gửi bài như thế nào vậy chỉ mình với

11 tháng 10 2020

a) \(S=7^{2013}-7^{2012}+7^{2011}-7^{2010}+...-7^2+7-1\)

\(S=\left(7^{2013}-7^{2012}\right)+\left(7^{2011}-7^{2010}\right)+...+\left(7-1\right)\)

\(S=7^{2012}\cdot6+7^{2010}\cdot6+...+6\)

\(S=6\cdot\left(7^{2012}+7^{2010}+...+1\right)\) chia hết cho 6

=> đpcm

b) \(S=7^{2013}-7^{2012}+...+7-1\)

\(\Leftrightarrow7S=7^{2014}-7^{2013}+...+7^2-7\)

\(\Leftrightarrow7S+S=\left(7^{2014}-...-7\right)+\left(7^{2013}-...-1\right)\)

\(\Leftrightarrow8S=7^{2014}-1\)

\(\Leftrightarrow S=\frac{7^{2014}-1}{8}\)

Vì S chia hết cho 6 => S nguyên => \(7^{2014}-1\) chia hết cho 8 và 6

Xét: \(S=\frac{7^{2014}-1}{8}=\frac{\left(7^4\right)^k\cdot7^2-1}{8}=\frac{\overline{.....1}\cdot49-1}{8}=\frac{\overline{.....8}}{8}\)

Đến đây ta có 2 khả năng S có cstc là 1 hoặc 6, mà nếu S có cstc là 1 thì lẻ không chia hết cho 6

=> S có cstc là 8

Thực hiện phép tính - Online Math

12 tháng 2 2018

          Số số hạng của A :

     ( 2013 - 1 ) : 1 + 1 = 2013

A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2009 + 2010 - 2011 - 2012 + 2013

A = ( 1 - 3 ) + ( 2 - 4 ) + ( 5 - 7 ) + ( 6 - 8 ) + ... + ( 2009 - 2011 ) + ( 2010 - 2012 ) + 2013

A = -2 + ( -2 ) + ( -2 ) + ( -2 ) + ... + ( -2 ) + ( -2 ) + 2013

A = -2 . [ ( 2013 - 1 ) : 2 ] + 2013

A = -2 . 1006 + 2013

A = -2012 + 2013

A = 1

9 tháng 3 2016

kết quả là 2013 nhé bạn nnnnnn

9 tháng 3 2016

A=(1-2-3+4)+(5-6-7+8)+...+(2009-2010-2011+2012)+2013

A=0+0+0+...+0+2013

A=2013