tìm x nguyên biết: \(2x^2-5x+1=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}+\dfrac{4x^2}{x^2-9}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9+4x^2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x-2}\)
\(=\dfrac{4x^2-12x}{x-3}\cdot\dfrac{1}{x-2}=\dfrac{4x}{x-2}\)
b: \(2x^2-5x+2=0\)
=>(x-2)(2x-1)=0
=>x=1/2
Thay x=1/2 vào P, ta được:
\(P=\left(4\cdot\dfrac{1}{2}\right):\left(\dfrac{1}{2}-2\right)=2:\dfrac{-3}{2}=\dfrac{-4}{3}\)
(2x - 1) (y - 4) = 13
\(\orbr{\begin{cases}2x-1=3\\y-4=3\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\y=7\end{cases}}\)
\(\orbr{\begin{cases}x=2\\y=7\end{cases}}\)
Vậy x = 2 và y = 7
Lời giải:
a.
PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.
PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$
$\Leftrightarrow -3-6x=0$
$\Leftrightarrow 6x=-3$
$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$
a. (3x - 1).(2x + 7) - (x + 1).(6x - 5) = 16
<=> 6x^2 + 19x - 7 - (6x^2 + x - 5) = 16
<=> 18x - 2 = 16
<=> 18x = 18
<=> x = 1
b. (10x + 9).x - (5x - 1).(2x + 3) = 8
<=> 10x^2 + 9x - (10x^2 + 13x - 3) = 8
<=> -4x + 3 = 8
<=> -4x = 5
<=> x = -5/4
c. (3x - 5).(7 - 5x) + (5x + 2).(3x - 2) - 2 = 0
<=> -15x^2 + 46x - 35 + 15x^2 - 4x - 4 - 2 = 0
<=> 42x - 41 = 0
<=> x = 41/42
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
a. \(\frac{3}{4}x-\frac{4}{5}.x=\frac{-2}{3}\)
\(\left(\frac{3}{4}-\frac{4}{5}\right)\) \(.x\) = \(\frac{-2}{3}\)
\(\frac{-1}{20}.x=\frac{-2}{3}\)
\(x=\frac{-2}{3}:\frac{-1}{20}\)
Bài làm:
a) | 5x - 4 | = | x + 2 |
=> 5x - 4 = x + 2
=> 5x - x = 2 + 4
=> x . (5 - 1) = 6
=> x . 4 = 6
=> x = 6 : 4 = 1,5
b) | x + 2/5 | = 2x
=> x + 2/5 = 2x hoặc x + 2/5 = -2x
* x + 2/5 = 2x
=> x - 2x = -2/5
=> x . (1 - 2) = -2/5
=> x .(-1) = -2/5
=> x = -2/5 : (-1)
=> x = 2/5
* x + 2/5 = -2x
=> x + 2x = 2/5
=> x . (1 + 2) = 2/5
=> x . 3 = 2/5
=> x = 2/5 : 3
=> x = 2/15
mk chỉ làm 2 bài này thôi, còn 2 bài kia mk ko có pít làm. Sorry!
\(2x^2-5x=4-1=2x^2-5x=3=.......\)
\(2x^2-5x+1=4\)
<=>\(2x^2-5x-3=0\)
<=>(2x2-6x)+(x-3)=0
<=>2x(x-3)+(x-3)=0
<=>(x-3)(2x+1)=0
<=>x-3=0 hoặc 2x+1=0
<=>x=3 hoặc x=-1/2