tìm x, y nguyên biết : xy+3x-y=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
y+3 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -6 | -4 | 0 | -2 |
Vậy\(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-4\right);\left(2;0\right);\left(4;-2\right)\right\}\)
\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
y+3 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -6 | -4 | 0 | -2 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)
Ta có : xy+ 3x -y =6
<=> x(y+3) - y =6
<=> x(y+3) -(y+3) =3
<=> (x-1)(y+3)=3
xy + 3x - y = 6
=>x(y + 3) - y - 3 = 6 - 3
=>x(y + 3) - (y + 3) = 3
=>(x - 1)(y + 3) = 3
Từ đó lập bảng...Chúc bạn học tốt!!!
xy + 3x - y = 6
x.(y+3) - y -3 = 6- 3
x.(y+3) - (y+3) = 3
(y+3).(x-1) =3 = 3.1 = (-3).(-1)
TH1: y + 3 = 3 => y = 0 (TM)
x - 1 = 1 => x = 2 (TM)
TH2:...
TH3:...
TH4:...
bn tự lm tiếp nha
suy ra x.(y+3)-(y+3)=9
suy ra (x-1).(y+3)=6
suy ra x-1;y+3 thuộc Ư(6)
Lập bảng tính
Ta có: xy - 3x + y = 6
=> x(y - 3) + (y - 3) = 3
=> (x + 1)(y - 3) = 3
=> x + 1; y - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
x + 1 | 1 | -1 | 3 | -3 |
y - 3 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 6 | 0 | 4 | 2 |
Vậy ...
\(a.\left(x-3\right)\cdot\left(y+2\right)=7\)Ư(7) = {1;-1;7;-7}
\(=>x-3\inƯ\left(7\right);y+2\inƯ\left(7\right)\)
Th1 : x - 3 = 1 ; y + 2 = 7
x-3 =1
=> x =4
y + 2 =7
=> y=5
Th2 : x - 3 = 7 ; y + 2 = 1
x-3 = 7
=> x = 10
y + 2 =1
=> y = -1
Th3 : x - 3 = -1 ; y + 2 = -7
x - 3 = -1
=> x = 2
y + 2 = -7
=> y= -9
Th4 : x - 3 = -7 ; y + 2 = -1
x - 3 = -7
=> x = -4
y+2 =-1
=> y=-3
Vậy {(y=-3 ; x=-4), (y=-9;x=2);(y=-1;x=10); ( y=5 ; x =4 )}
b. xy -2y + 3x-6 = 3
y(x-2) + 3(x-2)= 3
(x-2) . (y + 3) = 3
x-2 ϵ Ư(3); y+3 ϵ Ư(3)
Ư(3) = {-1;1;-3;3)
Th1 : x -2 = -1 ; y+3 = -3
x-2 =-1 y+3=-3
=> x=1 => y=-6
Th2 : x -2 = -3 ; y+3 = -1
x-2=-3 y+3=-1
=> x= -1 => y =-4
Th3 : x -2 = 1; y+3 = 3
x-2 = 1 y+3=3
=> x=3 => y = 0
Th4 : x -2 = 3; y+3 = 1
x- 2 = 3 y +3 = 1
=> x = 5 => y = -2
Vậy {(y=-6 ; x=1), (y=-4;x=-1);(y=0;x=3); ( y=-2 ; x =5 )}
a, (\(x\) - 3)(\(y\) + 2) = 7
Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
\(x-3\) | -7 | -1 | 1 | 7 |
\(x\) | -4 | 2 | 4 | 10 |
\(y\) + 2 | -1 | -7 | 7 | 1 |
\(y\) | -3 | -9 | 5 | -1 |
Theo bảng trên ta có:
Các cặp giá trị \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (-4; -3); (2; -9); (4; 5); (10; -1)
b, \(xy\) - 2\(y\) + 3\(x\) - 6 = 3
(\(xy\) + 3\(x\)) = 3 + 2\(y\) + 6
\(x\left(y+3\right)\) = 9 + 2\(y\)
\(x\) = (9 + 2\(y\)) : (\(y\) + 3)
\(x\) \(\in\) Z ⇔ 9 + 2\(y\)⋮\(y+3\) ⇒ 2\(y\) + 6 + 3 ⋮ \(y\)\(+3\)⇒2(\(y\)+3) + 3⋮\(y\)+ 3
⇒ 3 ⋮ \(y\) + 3
Ư(3) = (-3; -1; 1; 3}
Lập bảng ta có:
\(y\) + 3 | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (9 + 2\(y\)): (\(y\)+3) | 1 | -1 | 5 | 3 |
(\(x;y\)) | (1;-6) | (-1; -4) | (5;-2) | (3;0) |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(1; -6); (-1; -4); (5; -2) ;(3; 0)
LG
biến đổi được (x -1 )(y+3) = 3
=> x-1 và y+ 3 là ước của 3
Từ đó tìm được các cặp (x;y) là ( 4;-2);(-2;-4); (2;0); (0;-6)
xy + 3x - y = 6
<=> x(y + 3) - y - 3 = 6 - 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 là ước của 3
Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng sau :
Vậy ( x;y ) = { ( -2;-4 );( 0;-6 ); ( 4;-2 ) ; ( 2;0 ) }
xy + 3x − y =6
=> ( xy+ 3x) − (y +3) =6+3
=> x(y+3) − (y +3) = 9
=> (y+3).(x−1) = 9
Ta có: x,y e Z =>y+3 và x−1 e Z
Mà (y+3).(x−1) = 9
=> y+3 và x−1 e Ư(9) = { ±1; ±3; ±9}
Lập bảng
Vậy (y;x) e { (−4; −8); (−2; 10); ( −6; −2); (0; 4); (−12; 0); (6; 2) }