Chứng minh rằng 324^2017 -24 chia hết cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớp hơn a nên p là số lẻ.
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\) (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)
+) Với \(p=3k+1\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên) (2)
+) Với \(p=3k+2\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3 (3)
Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)
Vì p nguyên tố > 3
=> p \(̸⋮\)3
=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 \(⋮3\)
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 \(⋮\)8
Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24
6^4 + 324 = 1620
1620 chia hết cho 20 và 81 nên 6^4 +324 chia hết cho 20 và 81.
Bài này dễ vậy còn gì nữa.
Vì p là số nguyên tố lớn hơn 3 nên p lẻ
=> p+2015 và p+2017 là 2 số chẵn liên tiếp
=> (p+2015)(p+2017) chia hết cho 8(1)
mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2
Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)
Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)
Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24
=> ĐPCM
tìm x sao cho 2x + 2x+1 + 2x+2 + 2x+3 + ... +2x+2015 = 22017 - 2
giải giúp mình với
\(19^{120}-1\)
\(=\left(18+1\right)^{120}-1\)
\(=\left(\left(18+1\right)^{60}\right)^2-1\)
\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)
\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)
Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18