K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Ta có: \(\frac{12}{-6}=\frac{x}{5}\)

\(\Rightarrow x=\frac{5.12}{-6}=-10\)

Thay \(x=-10\) vào, ta được

\(\frac{-10}{5}=\frac{-y}{3}\)

\(\Rightarrow-y=\frac{-10.3}{5}=-6\)

\(\Rightarrow y=6\)

Vậy \(x+y=-10+6=-4\)

26 tháng 1 2018

12/-6=x/5=y/3

x=12*5/-6=-10

y=12*3/-6=-6

=>x+y=-10-6=-16

18 tháng 3 2015

Bài 1: Tính

a) \(1:\) \(\frac{99}{100}:\frac{98}{97}\)\(:\frac{97}{96}:...:\)\(\frac{2}{3}:\frac{1}{2}\)

b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right)\)\(:\)\(\left(\frac{11}{20}-\frac{26}{45}\right)\)

c) \(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}\)\(:\)\(\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{11}}\)

d) \(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)

Bài 2: Tìm x:

a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right)\)\(:\)\(\left(2+\frac{1}{6}-\frac{1}{4}\right)\)\(=\frac{7}{46}\)

b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)

Bài 3: 

Tìm tổng các số nghịch đảo của các số 10; 40; 88; 154; 238; 340.

Bài 4:

Một ô tô chạy trong \(\frac{4}{5}\)giờ được 32 km. Ô tô chạy quãng  đường AB mất \(3\frac{1}{2}\)giờ. Tính vận tốc của ô tô và độ dài quãng đường AB.

Bài 5:

Một người đi từ A đến B mất 45 phút trong khi đó người thứ 2 đi từ B về A mất 30 phút. Nếu hai người cùng khởi hành thì sau bao nhiêu phút thì gặp nhau?

Bài 6:

Cho a; b; c; \(\in\)N*. Chứng tỏ rằng \(\frac{a+b}{c}\)\(+\)\(\frac{b+c}{a}+\frac{c+a}{b}\)\(\ge\)b

26 tháng 10 2015

Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}\)

Áp dụng tc dãy tỉ số bằng nhau, ta được:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-\left(2x+3y-1\right)}{5+7-6}=\frac{\left(2x+3y\right)-\left(2x+3y\right)+\left(1-2+1\right)}{6}\)

\(=\frac{0+0}{6}=0\)

=>(2x+1)/5=0

2x+1=0

2x=0-1

x=-1/2(1)

=>(3y-2)/7=0

3y-2=0

3y=0+2

y=2/3(2)

Từ (1);(2)=> x+y=-1/2+2/3=-3/6+4/6=1/6=0,1(6)

mà làm để kết quả là 1 số nguyên nên x+y=0(sử dụng làm tròn)

mk ko chắc là đúng, mấy bữa nay chưa thi

 

 

26 tháng 10 2015

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6}=\frac{0}{6}=0\)

=>2x+1=0=>2x=-1=>x=-1/2

   3y-2=0=>3y=2=>y=3/2

=>x+y=-1/2+3/2=1

=>x+y=1

25 tháng 2 2017

x=18; y=2

12 tháng 3 2017

8 cặp đó

13 tháng 8 2017

Ta có:

\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)

\(\Rightarrow\frac{3x+2y}{6}=\frac{x+y}{5}\)

\(\Rightarrow5\left(3x+2y\right)=6\left(x+y\right)\)

\(\Rightarrow15x+10y=6x+6y\)

\(\Rightarrow9x+4y=0\)

\(\Rightarrow9x=-4y\)

\(\Rightarrow\frac{x}{y}=-\frac{9}{4}\)

Vậy, những cặp số \(\left(x,y\right)\)thỏa mãn đầu bài là những cặp số có tỷ lệ là \(-\frac{9}{4}\).

Ví dụ: \(\left(-9,4\right),\left(-18,8\right),\left(18,-8\right),...\)