K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Vì (x - 1)2 ≥ 0

=> M = - 7 + (x - 1)2 ≥ - 7 có gtnn là - 7

Dấu "=" xảy ra khi (x - 1)2 = 0 => x = 1

Vậy gtnn của M là - 7 <=> x = 1

11 tháng 1 2022

\(M=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1.\)

Ta có: \(\left(x-2\right)^2\ge0\) \(\forall x\in R.\)

           \(1>0.\)

\(\Rightarrow\left(x-2\right)^2+1\ge1.\Rightarrow M\ge1.\)

Dấu \("="\) xảy ra. \(\Leftrightarrow\left(x-2\right)^2+1=1.\Leftrightarrow\left(x-2\right)^2=0.\Leftrightarrow x=2.\)

Vậy GTNN của M = 1 khi x = 2.

11 tháng 1 2022

\(M=x^2-4x+4+1\)=\(\left(x-2\right)^2+1\)

vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2+1\ge1\)

=>\(M\ge1\) dấu''='' xảy ra  khi M = 1<=>x-2=0<=>x=2

kl:\(M_{min}=1\) khi và chỉ khi x =2

 

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

23 tháng 3 2020

                                                      Bài giải

\(M=\left(3x-\frac{1}{2}\right)^2-4\)

Do \(\left(3x-\frac{1}{2}\right)^2\ge0\text{ với mọi }x\text{ }\Rightarrow\text{ }\left(3x-\frac{1}{2}\right)^2-4\ge-4\)

Dấu " = " xảy ra khi \(3x-\frac{1}{2}=0\text{ }\Rightarrow\text{ }3x=\frac{1}{2}\text{ }\Rightarrow\text{ }x=\frac{1}{6}\)

Vậy GTNN của \(M=-4\text{ khi }x=\frac{1}{6}\)

9 tháng 8 2021

Giúp mik nha
Mik đang cần gấp

9 tháng 8 2021

\(M=6x-x^2+2\\ M=-\left(x^2-6x-2\right)\\ M=-\left(x^2-6x+9-11\right)\\ M=-\left(x-3\right)^2+11\)

Có \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\\ \Rightarrow-\left(x-3\right)^2+11\le11\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\\ \Leftrightarrow x=3\)

Vậy \(max_M=11\Leftrightarrow x=3\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2

28 tháng 12 2023

a: Thay a=9 và b=15 vào P, ta được:

\(P=\left(9+1\right)\cdot2+\left(15+1\right)\cdot3\)

\(=10\cdot2+16\cdot3=20+48=68\)

b: \(m=2\cdot a+3\cdot b+5=2\cdot9+3\cdot15+5=68\)

mà P=68

nên P=m