Help me với : Tìm các số nguyên x, y sao cho
a, x2+x*y=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(2xy-y+2x-7=0\)
\(\Leftrightarrow2xy+2x-y-1=6\)
\(\Leftrightarrow2x\left(y+1\right)-\left(y+1\right)=6\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=6\)
Do \(2x-1\) luôn lẻ với mọi x nguyên nên ta chỉ cần xét các trường hợp \(2x-1\) là ước lẻ của 6
Ta có bảng giá trị sau:
2x-1 | -3 | -1 | 1 | 3 |
y+1 | -2 | -6 | 6 | 2 |
x | -1 | 0 | 1 | 2 |
y | -3 | -7 | 5 | 1 |
Vậy \(\left(x;y\right)=\left(-1;-3\right);\left(0;-7\right);\left(1;5\right);\left(2;1\right)\)
\(xy+x-y=6\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
Làm nốt