1, thu gọn tổng sau
1+4+4^2+4^3+...+4^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{20}{A}\)+\(\dfrac{16}{A}\)=\(\dfrac{36}{A}\)=\(\dfrac{A}{1}\)
A.A=36.1
A2=36
A2=(+-6)2
A=+-6
B = 1+4+42+43+...+4100
4B= 4+42+43+44+....+4101
4B-B= 4+42+43+44+....+4101 -1-4-42- 43-...- 4100
3B = 4101 - 1
B = \(\frac{4^{101}-1}{3}\)
a, Đặt \(A=1+3+3^2+3^3+....+3^{100}\)
=> \(3A=3+3^2+3^3+3^4+...+3^{101}\)
=> \(2A=3A-A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
Vậy giá trị của biểu thức là \(\frac{3^{101}-1}{2}\)
b, Đặt \(B=1+4+4^2+2^3+....+4^{50}\)
=> \(4B=4+4^2+4^3+4^4+....+4^{51}\)
=> \(3B=4B-B=4^{51}-1\)
=> \(B=\frac{4^{51}-1}{3}\)
Vậy giá trị của biểu thức là \(\frac{4^{51}-1}{3}\)
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
a) Ta có: \(2A=2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
-
\(A=2+2^2+2^3+2^4+2^5+2^6+...+2^{100}\)
_______________________________________________________
\(A=2-2^{100}\)
Các bài khác cũng thế. Đây là mình tự nghĩ chứ không biết có đúng không. Có 60% sai! :)
1) \(\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^2-16\right)-x^3\)
\(=x^3+3x^2+3x+1-x^2+16-x^3\)
\(=2x^2+3x+17\)
2) \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8\)
\(=\left(x^3+6x^2+12x+8\right)-x\left(x^2-9\right)-12x^2-8\)
\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8\)
\(=-6x^2+21x\)
`@` `\text {Ans}`
`\downarrow`
`1.`
\((x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3\)
`= x^3 + 3x^2 + 3x + 1 - [ x(x+4) - 4(x+4)] - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 + 4x - 4x - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - x^2 + 16 - x^3`
`= (x^3 - x^3) + (3x^2 - x^2) + 3x + (1+16)`
`= 2x^2 + 3x + 17`
`2.`
\((x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8\)
`= x^3 + 6x^2 + 12x + 8 - [ (x^2 + 3x)(x-3)] - 12x^2 - 8`
`= x^3 + 6x^2 + 12x + 8 - (x^3 - 9x) - 12x^2 - 8`
`= x^3 + 6x^2 + 12x +8 - x^3 + 9x - 12x^2 - 8`
`= (x^3 - x^3) + (6x^2 - 12x^2) + (12x + 9x) + (8-8)`
`= -6x^2 + 21x `
Đặt S=1+4+4^2+4^3+...+4^100
=> 4S=4+4^2+4^3+4^4+...+4^101
=>4S-S=4+4^2+4^3+4^4+...+4^101-1-4-4^2-4^3-...-4^100
=> 3S=4^101-1
=> S=4^101-1/3
Vậy 1+4+4^2+4^3+...+4^100=4^101-1/3
l-i-k-e cho mình nha bạn!
Đặt A= 1+4+42+43+...+4100
=> 4A=4+42+43+...+4101
4A-A=(4+42+43+...+4101)-(1+4+42+43+...+4100)
4A-A=4101-1
Hay A(4-1)=3A=4101-1
=> A=(4101-1)/3