K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

\(G=\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+....+\frac{2n+1}{n^2.\left(n+1\right)^2}=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{2n+1}{n^2\left(n^2+2n+1\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{n^2+2n+1}\)

\(=1-\frac{1}{n^2+n+1}\left(n>0\right)\Rightarrow1-\frac{1}{n^2+n+1}<1\)

Vậy G<1

5 tháng 5 2017

Ta thấy \(\frac{3}{4}=\frac{1}{1^2}-\frac{1}{2^2};\frac{5}{36}=\frac{1}{2^2}-\frac{1}{3^2};...\)

Tổng quát:  \(\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

Đặt \(A=\frac{3}{4}+\frac{5}{36}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(\Rightarrow A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

\(A=1-\frac{1}{\left(n+1\right)^2}\)

Do \(\left(n+1\right)^2>0\Rightarrow A< 1.\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

24 tháng 3 2016

\(\begin{equation} x = a_0 + \cfrac{1}{740_1 + \cfrac{1}{897654_2 + \cfrac{1}{672_3 + \cfrac{1}{100_4} } } } \end{equation}\)

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

9 tháng 8 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)

Ta có : \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\Leftrightarrow\left(2n+1\right)^2>2n\left(2n+2\right)\)\(\Leftrightarrow\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

Mà \(\hept{\begin{cases}\frac{1}{3^2}< \frac{1}{2.4}\\\frac{1}{5^2}< \frac{1}{4.6}\\\frac{1}{7^2}< \frac{1}{6.8}\end{cases}}\)

\(...............\)

\(\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n\left(2n+2\right)}=B\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2n+2-2n}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< B< \frac{1}{4}\Rightarrow A< \frac{1}{4}\) hay đpcm

29 tháng 10 2018

A=4cm,B=6,C=10

Nếu A=4,B=6,C=10 thì A+B+C=4+6+10=20