Tính :
S=3+\(\frac{3}{2}\)+\(\frac{3}{2^2}\)+..+\(\frac{3}{2^9}\)
ghi cách giải giùm mk nha!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1.2.3.....99/2.3.4....100
=1/100
k mk nha đáp án đúng đó
P= \(\frac{1}{3}\)+\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+......+\frac{1}{1275}\)
Ta nhân tất cả phân số với 2/2 và không rút gọn
P = \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}\)\(+\)\(......+\frac{2}{2550}\)
Ta có công thức:
\(\frac{a}{b.c}=\frac{a}{c-b}.\left[\frac{1}{b}-\frac{1}{c}\right]\)
=> P = \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
P = \(2.\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{50}-\frac{1}{51}\right]\)
\(P=2.\left[\frac{1}{2}-\frac{1}{51}\right]\)
\(P=2.\frac{49}{102}\)\(=\frac{49}{51}\)
Đó là cách làm của tớ, có gì không hiểu rạng sáng ngày 18 tháng 3 hỏi nhé!
\(\frac{-3}{4}.\frac{2}{11}+\frac{3}{4}.\frac{9}{11}+2\frac{3}{4}\)
\(=\frac{3}{4}.\frac{-2}{11}+\frac{3}{4}.\frac{9}{11}+\frac{3}{4}+2\)
\(=\frac{3}{4}\left(-\frac{2}{11}+\frac{9}{11}+1\right)+2\)
\(=\frac{3}{4}.\frac{18}{11}+2\)
\(=\frac{27}{22}+2\)
\(=\frac{71}{22}\)
Study well ! >_<
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
\(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\)
\(=\frac{2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
S = \(3+3.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> 2A = \(1+\frac{1}{2}+...+\frac{1}{2^8}\)
=> 2A - A = A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)=1-\frac{1}{2^9}\)
=> S = 3 + 3 . A = \(3+3.\left(1-\frac{1}{2^9}\right)=3+3-\frac{3}{2^9}=6-\frac{3}{2^9}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+....+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=\frac{99}{100}\)
Bạn tự viết lại đề bài nha
\(\frac{1}{2}\)x\(\frac{2}{3}\)x\(\frac{3}{4}\)x\(\frac{4}{5}\)x...x\(\frac{18}{19}\)x\(\frac{19}{20}\)
=\(\frac{1x2x3x4x...x18x19}{2x3x4x5x...x19x20}\)
=\(\frac{1}{20}\)
= \(\frac{1}{2}\). \(\frac{2}{3}\).\(\frac{3}{4}\).\(\frac{4}{5}\). ... . \(\frac{18}{19}\).\(\frac{19}{20}\)
= \(\frac{1}{2}\)
tk cho mk nha, mik đg âm điểm huhu
S = \(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
= \(2+1+\frac{1}{2}+....+\frac{1}{2^8}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=2-\frac{1}{2^9}\)
\(\Rightarrow S=3\left(2-\frac{1}{2^9}\right)=\frac{3.\left(2^{10}-1\right)}{2^9}\)