K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

=>AD=ME

b: Xét tứ giác FDGE có

GE//FD

GE=FD

=>FDGE là hình bình hành

=>FG cắt DE tại trung điểm của mỗi đường(1)

ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AM,DE,FG đồng quy

c: góc AHM=góc AEM=góc ADM=90 độ

=>A,D,H,M,E cùng thuộc đường tròn đường kính AM

=>A,D,H,M,E cùng thuộc đường tròn đường kính DE

=>góc DHE=90 độ

25 tháng 7 2023

Ai giúp em với ạ

25 tháng 7 2023

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.

a: BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AB^2=4\cdot13=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

b:

CK//AB

CA\(\perp\)AB

Do đó: CK\(\perp\)CA tại C

Xét ΔACK vuông tại C có CH là đường cao

nên \(HA\cdot HK=CH^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot HB=HA^2\)

Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)

=>\(AC^2=HA\cdot HK+CH\cdot HB\)

c: Gọi M là trung điểm của BC

Ta có: ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>ΔABC nội tiếp (M)

Xét tứ giác BAEF có

\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)

Do đó: BAEF là tứ giác nội tiếp

=>\(\widehat{BAF}=\widehat{BEF}\)(1)

Ta có: AH\(\perp\)BC

EF\(\perp\)BC

Do đó: AH//EF

=>AD//EF

=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)

mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{BAF}=\widehat{ACB}\)

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

=>\(\widehat{MAB}=\widehat{ABC}\)

Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>MA\(\perp\)FA tại A

Xét (M) có

MA là bán kính
FA\(\perp\)MA tại A

Do đó: FA là tiếp tuyến của (M)

hay FA là tiếp tuyến của đường tròn đường kính BC

 

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn