K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

n>=2 hiển nhiên n khác không rồi thừa quá.

​A=(n-1)(n)(n+1)(n+2)

17 tháng 2 2017

giải giúp mk với ! huhu khocroi

17 tháng 2 2017

n(n+1)(n+2)

10 tháng 3 2020

a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n+1=t\)(1)

Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(\Rightarrow\) a là số chính phương

b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)

+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)

\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)

+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)

Do đó, pt vo nghiệm

Vậy để a=121 thì n =2 hoặc n=-5

18 tháng 11 2017

Giả sử E là số tự nhiên

Biến đổi E ta có :

\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)

\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)

Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)

\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)

\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)

\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)

Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)

Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1

=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)

22 tháng 12 2021

3r3reR

3 tháng 8 2018

gúp mình với nha