cho tam giac mpq can tai m tren canh mp lay e , tren nq lay f sao cho me=mf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
a) +) Xét ΔABD có
BA = BD ( gt)
⇒ Δ ABD cân tại B
+) Xét Δ BHA vuông tại H và Δ BHD vuông tại H có
BA = BD ( gt)
BH: cạnh chung
⇒ ΔBHA = Δ BHD (ch-cgv)
b)+) Ta có \(\left\{{}\begin{matrix}BA=BD\\AE=DC\end{matrix}\right.\)
⇒ BA + AE = BD + DC
⇒ BE = BC
+) Xét Δ BED và ΔBCA có
BE = BC ( cmt)
\(\widehat{ABC}\) : góc chung
BD = BA ( gt)
⇒ ΔDBE = ΔABC (c-g-c)
Lần sau vt đề hẳn hoi ra nhá bạn ơi~~~~
Học tốt ~~~
## Chiyuki Fujito
CM
a) Xét \(\Delta MBD\)và \(\Delta MEA\)có:
\(\hept{\begin{cases}MD=MA\left(gt\right)\\\widehat{BMD}=\widehat{EMA}\left(2gocdoidinh\right)\\MB=ME\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MEA\left(c.g.c\right)\)
\(\Rightarrow AE=BD\)( 2 cạnh tương ứng )
b) Xét\(\Delta MAF\) và \(\Delta MDC\)có:
\(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AMF}=\widehat{DMC}\left(2gocdoidinh\right)\\MF=MC\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MAF=\Delta MDC\left(c.g.c\right)\)
\(\Rightarrow\widehat{MFA}=\widehat{MCD}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT
\(\Rightarrow AF//BC\) (1)
c) Vì \(\Delta MBD=\Delta MEA\)( cmt )
\(\Rightarrow\widehat{MEA}=\widehat{MBD}\) ( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT
\(\Rightarrow AE//BC\) ( 2)
Từ (1) và (2) \(\Rightarrow F,A,E\) thẳng hàng ( định lý Py - Ta - go )
a: Xét ΔMND và ΔMPE có
MN=MP
\(\widehat{MND}=\widehat{MPE}\)
ND=PE
Do đó: ΔMND=ΔMPE
b: Xét ΔMNH vuông tại H và ΔMPK vuông tại K có
MN=MP
\(\widehat{HMN}=\widehat{KMP}\)
Do đó: ΔMNH=ΔMPK
Suy ra: NH=PK