Tìm n thuộc Z
biet 6n+1 chia het cho 3n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 7 + 1 ⋮ x + 7
x + 7 ⋮ x + 7
=> 1 ⋮ x + 7
=> x + 7 thuộc Ư(1) = {-1; 1; -7; 7}
=> x thuộc {-8; -6; -14; 0}
vậy_
x + 8 ⋮ x + 7
=> x + 7 + 1 ⋮ x + 7
làm tiếp như câu a
Ta có:
x+7+1 chia hết cho x+7
suy ra x+7+1-(x+7) chi hết cho x+7
suy ra 1 chia hết cho x+7
x+7 thuộc 1;-1
suy ra x=-6;-8
Ta có:
x2-3x-5 =x.x-3.x-5 chia hết cho x-3
=x.(x-3) chia hết cho x-3 suy ra 5 chia hết cho x-3
suy ra x-3 thuộc 5;-5;1;-1
suy ra x=8;-2;4;2
x2-x-1
x.x-x-1
x.(x-1)-1
suy ra x-1 thuộc 1;-1
suy x=2;0
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
a) \(\Rightarrow\left(6n+5\right)-2\left(3n-1\right)⋮3n-1\)
\(\Rightarrow\left(6n+5\right)-\left(6n-2\right)⋮3n-1\)
\(\Rightarrow6n+5-6n+2⋮3n-1\)
\(\Rightarrow7⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
ta có bảng sau :
3n-1 1 -1 7 -7
n L 0 L -2
mà \(n\in Z\)
\(\Rightarrow n\in\left(0;-2\right)\)
b) \(\Rightarrow\left(2n-1\right)-2\left(n+1\right)⋮n+1\)
\(\Rightarrow\left(2n-1\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n-1-2n-2⋮n+1\)
\(\Rightarrow-1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-1\right)=\left(1;-1\right)\)
ta có bảng sau
n+1 1 -1
n 0 -2
mà \(n\in Z\)
KL :\(n\in\left(0;-2\right)\)
A) \(\frac{n+2}{n+1}=\frac{n+1+1}{n+1}=\frac{n+1}{n+1}+\frac{1}{n+1}=1+\frac{1}{n+1}\)
\(\Rightarrow1⋮n+1-n+1\inƯ\left(1\right)=\left\{\pm1\right\}\). Lập bảng xét giá trị ra được \(x=-2\)
Các phần sau CM tương tự
3n+5 chia hết cho n-2
=>3n-6+11 chia hết cho n-2
=>3(n-2)+11 chia hết cho n-2
=>11 chia hết cho n-2
=>n-2 E Ư(11)={1;-1;11;-11}
=>n E {3;1;13;-9}
6n+5 chia hết cho 2n+1
=>6n+3+2 chia hết cho 2n+1
=>3(2n+1)+2 chia hết cho 2n+1
Vì 3(2n+1) chia hết cho 2n+1
=>2 chia hết cho 2n+1
=>2n+1 E Ư(2)={1;-1;2;-2}
=>n E {0;-1;1/2;-3/2}
6n + 1 ⋮ 3n - 1
<=> 6n - 2 + 3 ⋮ 3n - 1
<=> 2(3n - 1) + 3 ⋮ 3n - 1
=> 3 ⋮ 3n - 1 hay 3n - 1 ∈ Ư(3) = { ± 1 ; ± 3 }
Ta có bảng sau :
Vậy n = 0