(2x - 1)^4 = (2x-1)^6 cho mik lời giải chi tiết nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, 3/4 - 5/4 :(x-1) =1/2`
`=> 5/4:(x-1)= 3/4 -1/2`
`=> 5/4:(x-1)= 3/4 - 2/4`
`=> 5/4:(x-1)= 1/4`
`=> x-1= 5/4 : 1/4`
`=> x-1=5`
`=>x=5+1`
`=>x=6`
__
`(1/2-x)^2 -2^2 =12`
`=> (1/2-x)^2 = 12+4`
`=> (1/2-x)^2= 16`
`=> (1/2-x)^2 =4^2`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=4\\\dfrac{1}{2}-x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
__
`(1/2)^(2x-1) =1/16`
`=> (1/2)^(2x-1) = (1/2)^4`
`=> 2x-1=4`
`=> 2x=4+1`
`=>2x=5`
`=>x=5/2`
\(a,\dfrac{3}{4}-\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{4}\)
\(x-1=\dfrac{5}{4}:\dfrac{1}{4}\)
\(x-1=5\)
\(x=6\)
\(\left(\dfrac{1}{2}-x\right)^2-2^2=12\)
\(\left(\dfrac{1}{2}-x\right)^2-4=12\)
\(\left(\dfrac{1}{2}-x\right)^2=16\)
\(\left(\dfrac{1}{2}-x\right)^2=4^2hoặc\left(\dfrac{1}{2}-x\right)^2=\left(-4\right)^2\)
\(\dfrac{1}{2}-x=4hoặc\dfrac{1}{2}-x=-4\)
=>1/2 -x =4 1/2 -x= -4
=> x=1/2-4 x=1/2-(-4)
=>x=-7/2 x=9/2
vậy x∈{-7/2 ; 9/2}
\(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{16}\)
\(=>\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^4\)
\(=>2x-1=4\)
\(=>2x=5\)
\(=>x=\dfrac{5}{2}\)
\(a,\dfrac{3}{2}\cdot x-1=\dfrac{1}{2}x-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{1}{2}x=-\dfrac{3}{5}+1\)
\(\Rightarrow\left(\dfrac{3}{2}-\dfrac{1}{2}\right)x=-\dfrac{3}{5}+\dfrac{5}{5}\)
\(\Rightarrow x=\dfrac{2}{5}\)
\(b,\dfrac{1}{2}x+\dfrac{1}{2}\left(x-2\right)=\dfrac{3}{4}-2x\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{1}{2}x+2x-1=\dfrac{3}{4}\)
\(\Rightarrow\left(\dfrac{1}{2}+\dfrac{1}{2}+2\right)x=\dfrac{3}{4}+1\)
\(\Rightarrow3x=\dfrac{7}{4}\)
\(\Rightarrow x=\dfrac{7}{4}:3\)
\(\Rightarrow x=\dfrac{7}{12}\)
\(c,\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}=0\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{4}+\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{4}+\dfrac{2}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
\(d,4^{x-3}+1=17\)
\(\Rightarrow4^{x-3}=17-1\)
\(\Rightarrow4^{x-3}=16\)
\(\Rightarrow4^{x-3}=4^2\)
\(\Rightarrow x-3=2\)
\(\Rightarrow x=2+3\)
\(\Rightarrow x=5\)
#Toru
`3/2 x -1 =1/2x -3/5`
`=> 3/2x -1/2x = -3/5 +1`
`=> 2/2x= -3/5 + 5/5`
`=> x= 2/5`
__
`1/2x +1/2(x-2) = 3/4 -2x`
`=> 1/2x + 1/2x - 2/2 = 3/4 -2x`
`=> 1/2x +1/2x +2x = 3/4 + 1`
`=> 1/2x +1/2x + 4/2x = 3/4 +4/4`
`=> 6/2x = 7/4`
`=> x= 7/4 : 3`
`=>x=7/12`
__
`(x-1/2) -1/4=0`
`=> x-1/2=1/4`
`=> x=1/4 +1/2`
`=> x= 1/4 +2/4`
`=>x=3/4`
__
`4^(x-3) +1=17`
`=> 4^(x-3) =17-1`
`=> 4^(x-3)=16`
`=> 4^(x-3)=4^2`
`=> x-3=2`
`=>x=2+3`
`=>x=5`
\(\left(x-2\right)\left(2x+1\right)-5\left(x+3\right)=2x\left(x-3\right)+4\left(1+2x\right)-2\left(1+x\right)\)
\(2x^2+x-4x-2-5x-15=2x^2-6x+4+8x-2-2x\)
\(x-4x-2-5x-15=-6x+4+8x-2-2x\)
\(\Rightarrow-8x-17=2\)
\(-8x=19\Rightarrow x=-\dfrac{19}{8}\)
Vậy \(x=-\dfrac{19}{8}\)
Ta có : 2x - 37 = (2x + 1) - 38
Do 2x + 1 \(⋮\)2x + 1
Để (2x + 1) - 38 \(⋮\)2x + 1 thì 38 \(⋮\)2x + 1 => 2x + 1 \(\in\)Ư(38) = \(\left\{\pm1;\pm2;\pm19;\pm38\right\}\)
Lập bảng :
2x + 1 | 1 | -1 | 2 | -2 | 19 | -19 | 38 | -38 |
x | 0 | -1 | ko thõa mãn | không thõa mãn | 9 | -10 | ko thõa mãn | ko thõa mãn |
Vậy x = {0; -1; 9; -10} thì (2x - 37) \(⋮\)2x + 1
\(27-\left(2x+1\right)=4\)
\(2x+1=27-4\)
\(2x+1=23\)
\(2x=23-1\)
\(2x=22\)
\(x=22:2\)
\(x=11\)
Vậy x = 11
#HQX
\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)
\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)
\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)
Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)
\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)
Vậy \(P=\sqrt{2}\).
a) Để \(\dfrac{6}{3-x}\) có nghĩa thì \(3-x\ne0\Leftrightarrow x\ne3\)
b) Để \(\dfrac{-5}{4-2x}\) có nghĩa thì \(4-2x\ne0\Leftrightarrow x\ne2\)