K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

y + 100 + 10 = 20 + 100

        y + 110 = 120

                  y = 120 - 110 

                  y = 10

Vậy y = 10

26 tháng 1 2017

20+100=120

100+10=110

vậy y=120-110

y=10

7 tháng 10 2016

x=100+10-5

x=105

vay x=105

và y=80

7 tháng 10 2016

x + 5 - 10 = 100

x = 100 - 5 + 10 

x = 105

câu 2  theo mk là sai đề

12 tháng 7 2016

a.10+13+16+19+.......+97+100

=(10+100)+(13+97)+(16+94)+.....+(52+58)+55

=110+110+110+.......+110+55

=110x18+55

=1980+55

=2035

b.5+10+15+20+.......+95+100

=(100+5)+(10+95)+....+(55+50)

=105+105+...+105

=105x10

=1050

tim x,y biet:

c.135-y:4=106

y:4=135-106

y:4=29

y=29:4

y=\(\frac{29}{4}\)

d.356:y+241=245

256:y=245-241

356:y=4

y=356:4

y=89

1 tháng 6 2021

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2

Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)

nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)

Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)

nên \(\dfrac{y}{5}=\dfrac{z}{8}\)

hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

mà 2x-5y+2z=100

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)

2 tháng 8 2021

Ta có:  \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)

Lại có:  \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\)   \(\left(2\right)\)

Kết hợp ( 1 ) và ( 2 ) ta có:     \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)

⇒  \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)

⇒  \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)

⇒  \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)

18 tháng 8 2020

Ta có \(\hept{\begin{cases}\left(2x-3\right)^{10}\ge0\forall x\\\left[100\left(x+2y\right)\right]^{100}\ge0\forall x;y\end{cases}}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-3=0\\x+2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\y=-0,75\end{cases}}\)

Vậy x = 1,5 ; y = -0,75

18 tháng 8 2020

\(\left(2x-3\right)^{10}+\left(x+2y\right)^{100}\le0\)

Ta có: \(\left(2x-3\right)^{10}\)\(\left(x+2y\right)^{100}\) là số chính phương. => \(\left(2x-3\right)^{10}\ge0;\left(x+2y\right)^{100}\ge0\)

Mà \(\left(2x-3\right)^{10}+\left(x+2y\right)^{100}\le0\)

=> \(\left(2x-3\right)^{10}=0;\left(x+2y\right)^{100}=0\)

=> 2x - 3 = 0; x + 2y = 0. => x = 3/2; y = -3/4.

19 tháng 2 2023

y:5%+y:25%+y:0.2-y*10=100

y:5/100+y:25/100+y*5-y*10=100

y*20+y*4+y*5-y*10=100

y*(20+4+5-10)=100

y*19=100

y=100:19

y=100/19

tick mình đấy nhé

 

19 tháng 2 2023

tick rùi đó