Cho n\(\in\)N* chứng minh \(23^n+1972\) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: n+1=a2
2n+1=b2
Vì 2n+1 lẻ
=> b2:8 dư 1
=> 2n \(⋮\)8
=> n chẵn
=> a2:8 dư 1
=> n
GS: n+1= a2
2n+1=b2
=>2n chia hết cho 8
=> n chẵn
=> a2 chia 8 dư 1
=> n chia hết cho 8
a2+b2=3n+2
Vì số chính phương chia 3 dư 0 hoặc 1
Mà 3n+2 chia 3 dư 2
=> b2 và a2 chia 3 dư 1
=> n chia hết cho 3
Mà [3,8]=1=> n chia hết cho 24
Cho \(n\) là tổng hai số chính phương. Chứng minh rằng \(n^2\) cũng là tổng của hai số chính phương.
\(n=a^2+b^2\)
\(\Rightarrow n^2=\left(a^2+b^2\right)^2-4a^2b^2+4a^2b^2=\)
\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)+\left(2ab\right)^2=\)
\(=\left(a-b\right)^2\left(a+b\right)^2+\left(2ab\right)^2=\)
\(=\left[\left(a-b\right)\left(a+b\right)\right]^2+\left(2ab\right)^2=\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4
ta thấy n^2<n(n+1)<n(n+2)<(n+1)^2
mà n^2 và(n+1)^2 là 2 scp liên tiếp, mà giữa 2 scp liên tiếp ko có sô chính phương nào nên n(n+1) và n(n+2) ko là scp
tick nha
Ví dụ: Với n=1(1 thuộc N*)
=>23n+1972=231+1972=23+1972=1995 không phải là số chính phương(vô lí).
Vậy với n thuộc N* thì 23n+1972 không phải là số chính phương.